アクセス数 : 1026 件
ダウンロード数 : 64 件
この文献の参照には次のURLをご利用ください : https://ir.lib.shimane-u.ac.jp/1754
島根大学農学部研究報告 16 巻
1982-12-20 発行
減反率と直径生長の関係 : 第2報 減反率およびパラメータの決定
Relation between "Gentan Probability" and "Diameter Growth"(2) : Determination of "Gentan Probability" and its parameters
山本 充男
本文ファイル
d0030016n008.pdf
( 371 KB )
内容記述
As to the following formulas which give the life span distribution of forest stands,
Case I F_k(t) = (M<(Mt)>^^^<k-1>)/((k-1)!) exp[-Mt]
Case II F_k(t) = (N(1-e^<ct>)^^^<k-1>)/((k-1)!) exp[-N(1-e^<-ct>)]Nce^<-ct>
Case III F_k(t) = (N!k)/((k-1)!(k-1)!) <(e^<-ct>)>^^^<N-k+1><(1-e^<-ct>)>^^^<k-1>
the auther showed the way to determine the "Gentan probability" q(j) and the parameters. That is, some trasformations lead the q(j) in Case I and II to the chi distribution with the degree of freedom 2k. In Case III q(j) is led to the F-distribution with the degree of freedom 2k and 2(N-k+1). And it was showed that the parameters can be calculated by the records of cutting and the data on the diameter growth of forest stands.
Case I F_k(t) = (M<(Mt)>^^^<k-1>)/((k-1)!) exp[-Mt]
Case II F_k(t) = (N(1-e^<ct>)^^^<k-1>)/((k-1)!) exp[-N(1-e^<-ct>)]Nce^<-ct>
Case III F_k(t) = (N!k)/((k-1)!(k-1)!) <(e^<-ct>)>^^^<N-k+1><(1-e^<-ct>)>^^^<k-1>
the auther showed the way to determine the "Gentan probability" q(j) and the parameters. That is, some trasformations lead the q(j) in Case I and II to the chi distribution with the degree of freedom 2k. In Case III q(j) is led to the F-distribution with the degree of freedom 2k and 2(N-k+1). And it was showed that the parameters can be calculated by the records of cutting and the data on the diameter growth of forest stands.
About This Article
Pages
Other Article