アクセス数 : 1367 件
ダウンロード数 : 89 件
この文献の参照には次のURLをご利用ください : https://ir.lib.shimane-u.ac.jp/615
島根大学理学部紀要 23 巻
1989-12-25 発行
距離空間の可算和である層型空間の絶対近傍レトラクト
ANR of σ-Metric Stratifiable Spaces
郭 宝霖
本文ファイル
c0010023r004.pdf
( 1.01 MB )
内容記述
For a real vector space E, the second author introduced the locally convex topology T in [15] such that (E, T) is the strongest locally convex topology contained in the finite topology. In this paper, we shall prove the following.
(1) (E, T) is a σ-metric stratifiable space.
(2) For any σ-metric stratifiable space X, X can be embedded in a AR (σ-metric stratifiable)-space as a closed subset.
(3) For each natural number n, the fundamental subspace E_n of (E , T) is AE(stratifiable).
(4) For any σ-metric stratifiable space X, X is AR(σ-metric stratifiable) (resp. ANR) if and only if X is AE(σ-metric stratifiable) (resp. ANE).
(1) (E, T) is a σ-metric stratifiable space.
(2) For any σ-metric stratifiable space X, X can be embedded in a AR (σ-metric stratifiable)-space as a closed subset.
(3) For each natural number n, the fundamental subspace E_n of (E , T) is AE(stratifiable).
(4) For any σ-metric stratifiable space X, X is AR(σ-metric stratifiable) (resp. ANR) if and only if X is AE(σ-metric stratifiable) (resp. ANE).
About This Article
Pages
Other Article