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For a real vector space E, the second author introduced the locally convex topology 

j4r in [15] such that (E, j'r) is the strongest locally convex topology contained in the finite 

topology. In this paper, we shall prove the following 

(1) (E, j4r) is a a-metric stratifiable space 

(2) For any a-metric stratifiable space X, X can be embedded in a AR ((r-
metric stratifiable)-space as a closed subset 

(3) For each natural number n, the fundamental subspace E~ of (E , j4r) is 
AE(stratifiable) 

(4) For any a-metric stratifiable space X, X is AR(a-metric stratifiable) (resp. ANR) 

if and only if X is AE(a-metric stratifiable) (resp. ANE) 

S1. llmtroduction 

In [18] , K. Nagami called a topological space a-metric if the space is the 

countable union of closed metric subsets. (Gruenhage called it F.-metrizable in 

[7] .) K. Nagami introduced the notion of a-metric spaces for the purpose of 

investigations of dimension theory, and dimension theory of a-metric spaces was 

studied in [18], [19], [17] etc 

On the other hand, many examples of stratifiable spaces seem to have the cr-

metric type. For example, every CW-complex is a-metric, and even every chunk 

complex [5] is also a-metric. Further every Hyman's M-space is also of this type 
(cf. [10] , [20]). 

In this paper, we study ANR of a-metric stratifiable spaces. In section 3, we 

prove that the space I E Ic is cr-metric, where I E Ic is the linear space E equipped with 

the locally convex topology (cf. [15] ). Furthermore, we show that each a-metric 

stratifiable space X can be embedded into the AR(a-metric stratifiable)-space E(X) 

as a closed subset (for E(X), see [14]). In section 4, we prove that, for each 

natural number n, the fundamental subspace E~ of I E Ic is hyperconnected, 
accordingly it is AE(stratifiable) . In section 5, we shall give some considerations for 

adjunction spaces and some generalizatrons of the Borsuk-Whitehead-Hanner's 
theorem. 
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Throughout this paper, we assume that all spaces are regular and all maps are 

continuous. The letters N and R denote the set of all natural numbers and all real 

numbers, respectively. For M1~spaces and stratifiable spaces, see [5] and [1]. For 

AR. AE, ANR and ANE, see [9] ･ Every terminology should be referred to [6] , [9] 

and [1l], unless otherwise stated 

S2. Preliminaries 

In this paper, we exclusively use the notation which we state in this section. E 

is a real vector space with a Hamel basis ~ = {u.: ce e A}. Let ~~ be all n-

dimenslonal linear subspaces of E generated by n elements of ~~ (i. e., ~~ 
= { 

:ocieA, for i = 1,...,n}). Now, we restate the construction of the locally convex topology in a real vector 

space ([15; Construction 2.1]). 

CONSTRUCTION 2. 1. Let E be a real vector space with a Hamel basis 
~ = {u.: oc e A}, and (~~ all n-dimensional linear subspaces of E generated by n 

elements of ~. For each oc eA, pick up n.eN. Let U1 = U { {tu.: I tl 

{conv(F n U~_1): Fe~~}, where conv A is the convex hull of A. Let U(n.:c(eA) 

= U{U~: neN} and ~~/ be all U(n.: oceA). 

By [15; Lemma 2.2] , i~/ satisfies the local base condition. Therefore by 

[11; Theorem 5.1]. J4r = {Wc E: For each xe W, there is Uei~/ with x + U c W} is 

a vector topology (i.e. (E, j~r) is a linear topological space) and c~/ is a local base for 

J6r. We denote the space E equipped with this topology jcr by I E Ic, and we call it 

the locally convex topology. 

For a full simplicial complex K, we embed K in a suitable vector space E with 

the locally convex topology so that its vertices are at the unit points of E. In this 

case, we say that K has the locally convex topology, and we denote the space K with 

this topology by I K Ic' (Note that the original definition of the locally convex 

topology of K [13] coincides with the above definition.) For some investigations of 

IElc and IKlc, see [13], [15] and [16]. 

For a space X, we restate the construction of E(X)([14; Construction 3.1]). 

CONSTRUCTION 2.2. Let X be a space. A (X) denotes the full simplicial 
complex with the locally convex topology which has all points of X as the set of 

vectices. Let i be the canonical bijection from the O-skeleton Ao of A(X) onto 

X. Then E(X) is the set A(X) equipped with the topology generated by sets U such 

that 

(C1) U is open in A(X) and i(UnX) is open in X, 
(C2) U is convex in A(X). 
It is clear from (C1) that X is closed in E(X). By (C2), it is clear that E(X) is 

locally convex. For some considertion of E(X), see [14] . 



ANR of er-metric stratifiable spaces 25 

S3･ Ernbeddings to AR spaces 

For a real vector space E, we first prove the following: 

THEOREM 3.1. IElc is a-metric. 

PROoF. For each n e N and each F e (~n' since F is homeomorphic to the n-

dimensional Euclidean space, we can suppose that d is the Euclidean metric function 

on F. For x, y e F, we define a metric function dF On F as follows 

dF(x, y) = min{1, d(x, y)} 

For any Fe~ and each meN Iet F~ {xeF:dF(x, O) ~~ 1/m}, where O is the 
origin of E. For any F = 

 e (~'2 and each m e N, Iet Fm = {xeF: dF(x, 

) 

;~ 1/m, i = 1,2}. In general, for any F = 

e(~~ and each meN, Iet F~ = {x e F: dF(x, 

) :~ 1/m, j = 1, . . . , n}, where 

 ' 

= 

. Now, we construct a countable cover of I Elc' Let Ao = {O} . For each m e N 

and neN, Iet A~ = U {Fm: Fe(~'n}' Then it is clear that {Ao} U {A~: m, neN} is a 

countable cover of I E Ic' Next, we shall prove the following 

(1) A~ is closed in IElc for each meN and neN. 

(2) A~ is metrizable for each m eN and n e N 

Proof of (1) Let x~A~ If x = O, for each oceA we can pick up some naeN 

such that 1/na 
U(na: oceA)nF~ = ~ for each Fe~n' Therefore U(na: oceA)nA~ = ~:. Next, if 
x ~ O, there is G = 
e(~'k such that xeG-U{
:j 
= 1,...,k}･ In case k 

W= x + U(na: oc e A) is a neighborhood of x, and it is easily seen that Wn Fm = ~ 

for each Fe(~'~. Thus Wn A~ = ~. In case k = n, Iet 8 = dG(x, Gm). For each 
oek} , oei(i = 1,...,k), there is nai eN such that 1lnai l, . . . , 

there is np e N such that 1/np 

neighborhood of x, and it is easily seen that Wn Fm = ~ for each F e (~n' Thus 

WnAm = ~. In case k > n, if x = a.1ual + "'+a u let e = min{la .1:i 

"k ak' "* = 1,...,k} . For each oci(i = 1,...,k), there is nai e N such that 1ln.i 

p eA-{oel""'ock}, there is np eN such that 1/np 

+ U(na: cc e A) is a neighborhood of x, and it is easily verified that Wn Fm = ~ for 

each F e ~ Thus Wn Am = ~. For all cases, there is a neighborhood W of x such 

that Wn A~ = ~. This proves that A~ is closed m IElc 

Proof of (2) : We define a metric function on A~ as follows For each x y e A~ , m 

dF(x, y) (if x, y e Fm for some F e ~n) 
d(x, y) = 

1 (if xeFm, yeGm F ~ G for some F Ge~ ) 
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It is easy to see that d is a metric function on A~･ Further, the relative topology of 

A~ coincides with the topology induced by d. In fact, for any point x e A~, 
{(x + U(n.: oc e A)) nA~: U(n.: oc eA) e ~/} and {B(x; 8): 8 > O} (where B(x; 8) = 

{yeA~ d(x y) 

completed. 

The following corollary is trivial 

COROLLARY 3.2. Every subspace of I Elc is cF-metric. In particular, for a 
simplicial complex K, I K Ic is a-metric. 

We obtain the next theorem as a by-product of the proof of Theorem 3.1. In 

fact, each A~ does not contain any open subset of I Elc' 

THEOREM 3.3. IElc is not a Baire space 

In conclusion of this section, we prove the closed embedding theorem of a-

metric stratifiable spaces 

THEOREM 3.4. If X is a a-metric stratifiable space, then E(X) is an AR(cr-metric 

stratifiable)-space containing X as a closed subset 

PROOF. We use the notation of Construction 2.2. First since X is a-metric 
space, Iet X = U {A~ : n e N} , where A~ is closed in X for each n e N. Then since X is 

closed in E(X), each A* is closed in E(X). Next, since E(X) is stratifiable by 

[14; Theorem 3.3], X is a G6-subset of E(X). There is a countable open family 

{U~: n e N} of E(X) such that n {U~: n e N} = X. Since E(X)-U~ is a closed s~bset 

of A(X), by Corollary 3.2 there is a countable closed family {B~k: k e N} of E(X)-U~ 

such that E(X)-U~ = U {B.k: k e N} and each B~k is metrizable. Therefore 
E(X) = (U{A~: neN})U(U{B~k: neN, k eN}). Thus E(X) is er-metric. By [14; 
Theorem 3.4] , since E(X) is hyperconnected, E(X) is AR(er-metric stratifiable). Thus 

the proof is completed. 

S4. The fumdamemtal subspaces E~ of I E I c 

Let E~ = U (~'~ = U {F: F e (~~} . We call each E~ the fundamental subspace of 

I Elc' In this section, we prove that each E~ is AE(stratifiable). Before proving 

this theorem, we state the definition of hyperconnectedness (cf. [12] or [2] ) 

Throughout this section, Iet P~ _ I denote the unit simplex in the n-dimensional 

Euclidean space R"(i.e., P~_1 = {teR": ~ ti = I and each ti ~: O}), and A" the n-

i=1 
fold cartesian product of any set A. Furthermore, Iet ~i: A" -> A"~ I be the function 

defined by 

6,(al" " ' a~) = (al" " ' ai _ 1, a,+ 1' ' a~) 

for I l,...,n. 
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DEFlNITION 4. 1. A space L will be called hyperconnected if there exist functions 

hi:L' x Pi_1 -> L for each i e N, such that they satisfy conditions (a), (b), (c) 

(a) teP~_1 and ti = O implies h~(x, t) = h~_1(~ix, 5it) for each xeL" and 

neN-{1}, 
(b) for each xeL", the function t -> h~(x, t), from P~_1 to L, is continuous, 

(c) for each x e L and neighborhood U of x, there exists a neighborhood V of x 

such that Vc U and 

U {hi(Vi x Pi_1): ieN} c U 

Now, we begin to prove the following lemmas 

LEMMA 4. 2. E1 is hyperconnected. 

PRooF. hl: E1 x Po ~> E1 is defin,ed by hl(x, {1}) = x. 

In case i = 2, Iet x = (xl, x2) e(E1)2 and t = (tl, t2)eP1' First, we consider the 

case that there is Fe(~'1 such that xl' x2 eF. Then h2: (E1)2 x Pl -> E1 is defined 

by 

h2(x, t) = tlxl + t2x2' 

Next, in case that there are Fi e ~l(i = 1, 2) such that xi e Fi(i = 1, 2) x xlpup and 

x2 = x2vuy. If xlpx2v > O, the segment [xl' x2](= {slxl + s2x2: sl + s2 = 1, sl, 

x s2 ~ O}) and the line 

 cross at ~lxl + (1 - ~l)x2, where ~l = 2,, . If xlp + x2v 

xlpx2v 

 cross at tlxl + (1 t )x2, where ~l x = 2v . Then h2 is defined by 
x27 , - xlp 

fl ~ tl 
T1 x2 (if O ~ tl ~ ~l) 

h2(x, t) 

tl ~ ~l 
1 -tlxl (if~ 

In case i = 3, Iet x = (xl' x2' x3)e(El)3 and t = (tl' t2' t3)eP2' First, we 

consider the case that there is F e ~l such that xi e F(i = 1,2, 3). Then h3: (E1)3 

x P2 ~' E1 is defined by 

h3(x, t) tlxl + t2x2 + t3x3. 

Next m case that there rs Fe~ such that x eF, xk~F(k = 2, 3), h2 is defined by 

h3(x, t) = 

t
 h xl, h2 61X, ~1 1 - tl ' (tl, I - tl) 

X1 

(if tl ~ 1) 

(if tl = 1). 
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Any other case (i.e. x2 e F, xl ~ F, x3 ~ F; etc.) is similar 

We assume that, for k ~ n - 1, hk: (E1)k x Pk_ I -> E1 were defined 
inductively. In case i = n, Iet x = (xl, . . . , x~) e (E1)n and t = (tl" " ' tn) e Pn- 1' First, 

we consider the case that there is F e (~l such that xi e F(i = 1, . . . , n). Then hn: (E1)n 

x Pn-1 ~> Ei is defined by 

hn(x, t) = tlxl + t2x2 + "' + tnxn' 

Next m case that there is F e (~'1 such that xl e F, xi~F(i = 2, . . . , n) h rs defined by 

t
 h2 xl' h~ 1 ~lx, 61 1 - tl ' (tl' I - tl) (if t ~ 1) 

h~(x, t) = 

Any other case (i.e. x2 e F, xl ~ F, xi ~ F(i = 3, . . . , n); etc.) is similar 

It is easily verified by the constructions of h. and the locally convex topology 

that these functions h~ satisfy the conditions (a), (b), (c) of Definition 4. 1 

LEMMA 4. 3. E2 is hyperconnected. 

PRooF. hl: E2 X Po ~> E2 is defined by hl(x,{1}) = x. 

In case i = 2, Iet x = (xl, x2) e (E2)2 and t = (tl, t2) e F1. First, we consider the 

case that there is F e ~2 such that xl' x2 e F. Then h2: (E2)2 x P1 ~' E2 is defined by 

h2(x, t) = tlxl + t2x2 

Secondly, in case that there are Fi e ~2(i = 1,2) such that xi e Fi(i = 1, 2) x xl*u* 
+ xlpup and x x2.u. + x2vuv If x x > O, the segment [xl' x2] ; = {slxl 

' Ip 2y + s2x2: sl + s2 = 1, sl' s2 ~ O}) and the plane 

 cross at tlxl + (1 ~ tl)x2' where tl = x2y . If xlpx2y 
xlp + x2y 

x2v 
 cross at T1 xl + (1 - ~1)x2' where ~l = ' Then, for the point 

x2y - xlp 

zo = (rl xl* + (1 - T1)x2.)u*, 

h2 is defined by 

tl ~l ~ tl 
tl z + x2 (if O ~ tl ~ ~l) o tl 

h (x t) 

2 ' 1-tl tl ~ tl 
(if ~l ~ tl ~ 1) zo + 1 - tl xl 1 - tl 

Thirdly, in case that there are Fi e ~2(i = 1,2) such that xi e Fi(i = 1,2) and F n F 

= {O} . Then h2 is defined by the same method in the above. (For general cases, 

see the proof of Lemma 4.4.) 
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In case i = 3, Iet x = (xl' x2' x3) e(E2)3 and t = (tl, t2' t3) e P2' First, we consider 

the case that there is F e (~2 such that xi e F(i = 1, 2, 3). Then h3: (E2)3 x P2 -> E2 is 

defined by 

h3(x, t) tlxl + t2x2 + t3x3 

Next, in case that there is F e (~2 such that xl e F, xi ~ F(i = 2, 3), h3 rs defined by 

t
 h xl, h ~lx, ~1 1 - tl (tl' I - tl) (if tl ~ 1) 

h3(x, t) = (if tl = 1). xl 

Any other case (i.e. x2 e F, xl ~ F, x3 ~ F; etc.) is similar 

We assume that, for k ~ n - 1, hk: (E2)k x Pk_ I -> E2 Were defined, 
inductively. In case i = n, hn: (E2)n x Pn-1 ~' E2 is defined as same as m Lemma 

4.2. 

Furthermore, it is easily verified by the constructions of hn and the locally 

convex topology that these functions hn satisfy the conditions (a), (b), (c) of Definition 

4. I . 

LEMMA 4. 4. For each n ~ 3, En is hyperconnected. 

PRooF. We assume that the index set A of the Hamel basis ~~ is a well-ordered 

set with the order ~ , and we introduce the lexicographic order to A x A 

In case i = 1, hl: En X Po ~* En is trivially defined 

In case i = 2, Iet x = (xl' x2) e (En)2 and t = (tl' t2) e P1' First, we consider the 

case that there is F e (~n Such that xl' x2 e F. Then h2: (En)2 x P1 ~> En is defined by 

h2(x, t) = tlxl + t2x2 

Secondly, in case that there are Fi e (~n(i = 1,2) such that xi e Fi(i = 1,2) and F1 

= al""'uak' uak+1""'ua~>, F2 = 

, where I ~ k ~ n - 1, oci ~ pj for k + I ~ i, j ~ n and ock+1 ~ ock+2 ~ "' ~ ocn' pk+1 ~ pk+2 ~ " 

A = {(oci, pj): k + I ~ i, j ~ n} be a subset of A x A. Further let 

xl =x u + "' +x u +xlak+1uak+1+ +xla u lak ak lal al 

x2 = x u + "' + x2akuak + x2pk+1upk+1 + + x2p~up~' 2al al 

Then since A is a well-ordered set, there exrsts 

(oep, pq) = mm{(oc p)eA xlax2p ~ O} 

If xlapx2pq > O, the segment [xl' x2] and the plane "" ak' ap + 

u u u up > cross at tlxl + (1 - tl)x2, where T1 = x2pq 
ap+1""' a~' Pq+1""' xlap + x2pq 

If xlapx2pq 
ak' ap al' " " 
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u. , up .,, ,up > cross at ~lxl + (1 - ~l)x2, where ~ x2p. . Then, for 

1 x2p. - xl'. 

the point 

zo = (~lxl'* + (1 - tl)x2. )u., + "' + (Tlxl'* + (1 tl)x2.*)u.k, 

h2 is defined by 

tl ~l ~ tl 
~l zo + t (if O ~ tl ~ tl) x2 

h2(x, t) 

1-tl t ~t o ll_t:xl (ift 1-tlz + 

Thirdly, in case that there are Fi e (~~(i = 1,2) such that xi e Fi(i = 1,2) and Fl n F2 

= {O} . Then h2 is defined by the same method in the above; the case k = O 

In case i = 3 or i = k(k ~ 4), hi: (E~)' x Pi_1 ~, E~ is defined as same as in 

Lemma 4.3 
Furthermore, it is easily verified by the constructions of h~ and the locally 

convex topology that these functions h~ satisfy the conditions (a),(b), (c) of Definition 

4. I . 

By Lemmas 4.2~L4 and [2; Theorem 4.1], we have 

THEOREM 4. 5. For each n e N, E~ is hyperconnected. Therefore, E~ Is 
AE (stratifiable) 

S 5. Adjumctiom spaces 

It rs obvious that 

PROPOSITION 5.1. Let X, Y be a-metric, A a closed subset of X andf: A ~' Y a 

map. Then the adjunction spase X U f Y is also a-metric. 

Since the adjunction space of two stratifiable space is stratifiable 
[1, Theorem 6.2] , the following is obtained by the well-known method which uses 

adjunction spaces (cf. [9] ) -

THEOREM 5.2. For a a-metric stratlfiable space X, X is AR(cr-metnc stratifiable) 

(resp. ANR) tf and only tf X is AE(a-metric stratifiable) (resp. ANE) 

It is well known [9; ppl78] that if X. A and Y are ANR(metric)'s and f: A ~･ Y 

a map, then the adjunction space X U fY is ANR(metric) provided that it is 
metrizable. This result was essentially proved in successive stages by Borsuk [3], 

Whitehead [22] and Hanner [8] . For attempt to generalize this theorem, Hyman 

[10] proved the case of Hyman's M-spaces. Cauty [4] announced the case of 
stratifiable spaces, but his proof was false. This was pointed out by San-nou 

L2l]. Therefore the case of stratifiable spaces is still open. Even the case of a-

metric stratifiable spaces is still open 
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PROBLEM 5.3. Let X and 

andf:A->Yamap. If X, A 
X U f Y ANR(stratifiable)? 

Y be two stratifiable spaces, A a closed subset of X 

and Y are ANR(stratifiable)'s, is the adjunction space 
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