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For a real vector space E, the second author introduced the locally convex topology
 in [15] such that (E, ) is the strongest locally convex topology contained in the finite
topology. In this paper, we shall prove the following:

(1) (E, 7) is a o-metric stratifiable space.

(2) For any o-metric stratifiable space X, X can be embedded in a AR(o-
metric stratifiable)-space as a closed subset.

(3) For each natural number n, the fundamental subspace E, of (E, ) is
AE(stratifiable).

(4) For any o-metric stratifiable space X, X is AR(c-metric stratifiable)(resp. ANR)
if and only if X is AE(c-metric stratifiable) (resp. ANE).

§1. Introduction

In [18], K. Nagami called a topological space o-metric if the space is the
countable union of closed metric subsets. (Gruenhage called it F,-metrizable in
[7].) K. Nagami introduced the notion of o-metric spaces for the purpose of
investigations of dimension theory, and dimension theory of o-metric spaces was
studied in [18], [19], [17] etc.

On the other hand, many examples of stratlﬁable spaces seem to have the o-
metric type. For example, every CW-complex is o-metric, and even every chunk
complex [5] is also o-metric. Further every Hyman’s M-space is also of this type

_(cf. [10], [20]).

In this paper, we study ANR of o-metric stratifiable spaces. In section 3, we
prove that the space |E|¢ is g-metric, where |E|¢ is the linear space E equipped with
the locally convex topology (cf. [15]). Furthermore, we show that each o-metric
stratifiable space X can be embedded into the AR(c-metric stratifiable)-space E(X)
as a closed subset (for E(X), see [14]). In section 4, we prove that, for each
natural number n, the fundamental subspace E, of |E|c. is hyperconnected,
accordingly it is AE(stratifiable). In section 5, we shall give some considerations for
adjunction spaces and some generahzatmns of the Borsuk-Whitehead-Hanner’s
theorem.
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Throughout this paper, we assume that all spaces are regular and all maps are
continuous. The letters N and R denote the set of all natural numbers and all real
numbers, respectively. For M,-spaces and stratifiable spaces, see [5] and [1]. For
AR, AE, ANR and ANE, see [9]. Every terminology should be referred to [6], [9]
and [11], unless otherwise stated.

§2. Preliminaries

In this paper, we exclusively use the notation which we state in this section. E
is a real vector space with a Hamel basis # = {u,: ae4}. Let &, be all n-
dimensional linear subspaces of E generated by n elements of £ (i.e. &,
= {Qtgyo... utg i 0,€ 4, for i=1,...,n}).

Now, we restate the construction of the locally convex topology in a real vector
space ([15; Construction 2.1]).

ConsTRUCTION 2.1. Let E be a real vector space with a Hamel basis
B ={u,  aed}, and &, all n-dimensional linear subspaces of E generated by n
elements of %. For each aed, pick up mn,eN. Let U, =U{{tu,: |t|
< 1/n,}:aeAd}. By using induction, if U,_, has been defined for n > 2, let U, =U
{conv(FNU,_,): Fe&,}, where conv A4 is the convex hull of 4. Let U(n,:oecA)
=U{U,: neN} and % be all U(n,: ane ).

By [15; Lemma 2.2], % satisfies the local base condition. Therefore by
[11; Theorem 5.1], = {W < E: For each xe W, there is Ue# with x + U = W} is
a vector topology (i.e. (E, 7) is a linear topological space) and % is a local base for
J . We denote the space E equipped with this topology J by |E|, and we call it
the locally convex topology.

For a full simplicial complex K, we embed K in a suitable vector space E with
the locally convex topology so that its vertices are at the unit points of E. In this
case, we say that K has the locally convex topology, and we denote the space K with
this topology by |K|.. (Note that the original definition of the locally convex
topology of K [13] coincides with the above definition.) For some investigations of
|E|c and |K]|c, see [13], [15] and [16].

For a space X, we restate the construction of E(X)([14; Construction 3.1]).

CoNSTRUCTION 2.2. Let X be a space. A(X) denotes the full simplicial
complex with the locally convex topology which has all points of X as the set of
vectices. Let i be the canonical bijection from the O-skeleton A° of A(X) onto
X. Then E(X) is the set A(X) equipped with the topology generated by sets U such
that

(C1) U is open in A(X) and i(UnX) is open in X,

(C2) U is convex in A(X).

It is clear from (C1) that X is closed in ‘E(X ). By (C2), it is clear that E(X) is
locally convex. For some considertion of E(X), see [14].
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§3. Embeddings to AR spaces
For a real vector space E, we first prove the following:
TueoreM 3.1. |E|¢ is o-metric.

Proor. For each ne N and each Fe&,, since F is homeomorphic to the n-
dimensional Euclidean space, we can suppose that d is the Euclidean metric function
on F. For x, yeF, we define a metric function dr on F as follows:

dp(x, y) = min{I’ d(x, y)}

For any Fe&, and each meN, let F" = {xe F:dg(x, 0) > 1/m}, where O is the
origin of E. For any F = {u,,, U4,,» €&, and each me N, let F" = {xeF:dp(x, {u,))
> 1/m,i=1,2}. In general, for any F = QllgyennsUg,» €E, and each meN, let
F™ = {xeF: dp(x, {yps.crlgp..orlly,)) = 1/m, j = L,...,n}, where (ity,... lyp...sla,)
= QlhgyyenesUgy_ g Ugjy pseees Uy

Now, we construct a countable cover of |E|.. Let 4, = {0}. For each meN
and neN, let A" =U{F™ Fe&,}. Then it is clear that {d,}U{A4}:m, neN} is a
countable cover of |E|c.. Next, we shall prove the following:

(1) A" is closed in |E|; for each me N and neN.

(2) A™ is metrizable for each me N and neN.

Proof of (1): Let x¢ A™. If x =0, for each ae A we can pick up some n,eN
such that 1/m, <1/m. Then U(n,: aeA) is a neighborhood of x = 0, and
U(n,: ae A)nF™ = & for each Fe&, Therefore Un,: aeA)nAy = . Next, if
x#0, there is G = lg,..., Uy €&, such that xeG-U{{ug,...ollyp...r Uz J
=1,...,k}. Incase k <n, for each ae 4, there is n,e N such that 1/n, < 1/m. Then
W= x + U(n,: acA) is a neighborhood of x, and it is easily seen that WnF™ = &
for each Fe&, Thus Wnd?" = . In case k=n, let ¢ =dg(x, G"). For each
ai=1,...,k), there is n, e N such that 1/n, <e¢/k. For each BeAd—{o,..., 0},
there is nge N such that 1/n < 1/m. For these n(xed), W=x+ U(n,: a€ ) is a
neighborhood of x, and it is easily seen that WnF" = & for each Fe&, Thus
WnA" = &. In case k>n, if x=a,u, + -+ 05U, let &= min{|a,l:i
=1,...,k}. For each o;(i = 1,...,k), there is n, eN such that 1/n, <e For each
BeA—{ay,..., o}, there is nye N such that 1/n; < 1/m. For these n,(aed), W= x
+ U(n,: aeA) is a neighborhood of x, and it is easily verified that WnF" = ¥ for
each Fe&, Thus WnAr = . For all cases, there is a neighborhood W of x such
that WnA™ = (J. This proves that A is closed in |E|c.

Proof of (2): We define a metric function on A} as follows: For each x, ye Ay,
dg(x, y) (if x, ye F™ for some Feé&,)

as, ) = |
1 (if xeF™, yeG™, F # G, for some F, Ge&,).
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It is easy to see that d is a metric function on 4. Further, the relative topology of
Al coincides with the topology induced by d. In fact, for any point xe AP,
{x+ Um,: aed))nAy: Un,: ae A) e} and {B(x; ¢): ¢ > 0} (where B(x; ¢) =
{yeAl: d(x, y) <e}) are equivalent local bases of x in AF. Thus the proof is
completed.

The following corollary is trivial.

CorOLLARY 3.2. Every subspace of |E|c is o-metric. In particular, for a
simplicial complex K, |K|c is o-metric.

We obtain the next theorem as a by-product of the proof of Theorem 3.1. In
fact, each A does not contain any open subset of |E|c.

THEOREM 3.3. |E|; is not a Baire space.
In conclusion of this section, we prove the closed embedding theorem of o-
metric stratifiable spaces.

TueorReEM 3.4. If X is a o-metric stratifiable space, then E(X) is an AR (o-metric
stratifiable)-space containing X as a closed subset.

Proor. We use the notation of Construction 2.2. First since X is o-metric
space, let X = U{A4,: ne N}, where A, is closed in X for each ne N. Then since X is
closed in E(X), each A, is closed in E(X). Next, since E(X) is stratifiable by
[14; Theorem 3.3], X is a G;subset of E(X). There is a countable open family
{U,: neN} of E(X) such that n{U,: neN} = X. Since E(X)-U, is a closed subset
of A(X), by Corollary 3.2 there is a countable closed family {B,,: ke N} of E(X)-U,
such that E(X)-U,=U{B,: keN} and each B, is metrizable. Therefore
E(X) = (U{A, neN})U(U{B,: neN, keN}). Thus E(X) is o-metric. By [14;
Theorem 3.4], since E(X) is hyperconnected, E(X) is AR(o-metric stratifiable). Thus
the proof is completed.

§4. The fundamental subspaces E of |E|.

Let E,=Ué,=U{F: Feé&,}. We call each E, the fundamental subspace of
|E|c. In this section, we prove that each E, is AE(stratifiable). Before proving
this theorem, we state the definition of hyperconnectedness (cf. [12] or [2]).
Throughout this section, let P,_, denote the unit simplex in the n-dimensional

Euclidean space R"(ie., P,_; = {teR" ) t;=1and eacht; > 0}), and A" the n-
i=1

fold cartesian product of any set A. Furthermore, let §;: A" — A"~ ! be the function
defined by

5i(a1’-~-:an) = (ala-~~,ai—1’ai+1>---aan)

fori=1,...,n
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DEFINITION 4.1. A space L will be called hyperconnected if there exist functions
hi: L' x P,_, — L for each ie N, such that they satisfy conditions (a), (b), (c):

(a) teP,_, and t;=0 implies h,(x, t) = h,-,(5;x, 6;t) for each xeL" and
neN-{1},

(b) for each xeL" the function t — h,(x, t), from P,_; to L, is continuous,

(c) for each xe L and neighborhood U of x, there exists a neighborhood V of x
such that V<= U and

U{h(Vix P;_y):ieN} c U.
Now, we begin to prove the following lemmas.
LemMa 4.2. E, is hyperconnected.

PROOF. h,: E, x P, — E, is defined by h(x, {1}) = x.

In case i = 2, let x = (x;, x,)e(E;)* and ¢ = (¢, t,)e P;. First, we consider the
case that there is Fe&, such that x,, x,eF. Then h,: (E;)* x P, — E, is defined
by

hz(x, t) = t1x1 + t2x2.
Next, in case that there are F;e &,(i = 1, 2) such that x;e F,(i = 1, 2), x; = x,,u,; and
Xy = XU, If X15%, >0, the segment [x;, x,](= {$1%; + 82%5:8; + 5, =1, 54,

_ X oy
X1p + X2,

X1,%y < 0, the segment [x;, x,] and the line {up —u,> cross at 7;x; + (1 — £)x,,

s, > 0}) and the line {u; + u,) cross at f;x; + (1 — #;)x,, where ; =

where f, = —2__ Then h, is defined by

X2, ™ X1
i, —t
4 1 - x, (f0<t; <F)
1
hz(x, t) =
t, — 1t .
—x, (ff; =t < 1)

In case i=3, let x=(x;, X5 x3)€(E;)® and ¢ =(ty, t,, t3)€P,. First, we
consider the case that there is Fe&, such that x;e F(i = 1,2,3). Then h;: (E,)?
x P, —» E, is defined by

hy(x, t) =t; Xy + tyX, + L3X3.

Next, in case that there is Fe&, such that x, €F, x, ¢ F(k = 2,3), h, is defined by

h2(<x1, h2<51x, 51(‘1—_t71)>>, (t, 1 — tl)) (ft; # 1)

hy(x, ©) =
%9 [xl (f t, = 1).
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Any other case (i.e. x,€F, x; ¢ F, x;¢ F; etc.) is similar.

We assume that, for k<n—1, h:(E)"xP,_,—E, were defined
inductively. In case i = n, let x = (x4,...,x,)€(E,)" and t = (ty,...,t,)eP,_,. First,
we consider the case that there is F €&, such that x;e F(i=1,...,n). Then h,: (E,)"
x P,_, — E; is defined by

hy(x, t) =t1x; +t,X5 + o + L, X,

Next, in case that there is Fe &, such that x, e F, x;¢ F(i = 2,...,n), h, is defined by

hz((’ﬁy hn~1(51x7 51(%))) (t, 1 - t1)> (ift, # 1)
-1

h,(x, t) = l )
X1 @ift, = 1).

Any other case (i.e. x,€F, x¢F, x;¢ F(i = 3,...,n); etc.) is similar.
It is easily verified by the constructions of h, and the locally convex topology
that these functions h, satisfy the conditions (a), (b), (c) of Definition 4.1.

Lemma 4.3. E, is hyperconnected.

PROOF. h;: E, x Py — E, is defined by h,(x,{1}) = x.
In case i = 2, let x = (x,, x,)e(E,)?® and t = (t,, t,)e P,. First, we consider the
case that there is F € &, such that x;, x,€F. Then h,:(E,)*> x P, — E, is defined by

hz(x, t) = t1x1 + thZ.

Secondly, in case that there are F;e &,(i = 1,2) such that x;e F,(i = 1, 2), x;, = x,,u,
+ Xypup and X, = Xp,Uy + Xpyi,. If Xy5X,, >0, the segment [x;, x,](= {s;x;
+ 8;%5: 8, + 5, =1,5;,5,>0}) and the plane <u, uz +u,) cross at f;x; + (1

x
— £;)x,, where f; = ——22— If X15X,, <0, the segment [x,, x,] and the plane
xlﬁ + xzy
x
{utyy g — u,) cross at £y x; + (1 — &;)x,, where §; = . zyx Then, for the point
2y = X1p

2o = (1 X140 + (1 — F1)X20) Uy
h, is defined by

t I,—t .
S R Bd SV (o<t <ty
fl f}
hy(x, t) =
1-— tl tl - fl

l—flzo 1—f1X1 (ife <t, <1).

Thirdly, in case that there are F,e&,(i = 1,2) such that x;e F;(i=1,2) and F,nF,
= {0}. Then h, is defined by the same method in the above. (For general cases,
see the proof of Lemma 4.4.)



ANR of g-metric stratifiable spaces 29

In case i = 3, let x = (x4, X, X3)€(E,)® and t = (t,,t,,t3)€ P,. First, we consider
the case that there is Fe &, such that x;e F(i = 1,2,3). Then h;: (E))* x P,—~E,is
defined by

ha(x, t) = t1Xy + 13X, + t3X3.

Next, in case that there is Fe &, such that x;eF, x;¢ F(i = 2,3), h3 is defined by

h2<<x1, h2<61x, 51<_1_t—t)>) (t 1 — t1)> (i, #1)

hi(x, t) = [ _
X4 @ift, =1).

Any other case (i.e. x,€F, x,;¢F, x;¢ F; etc.) is similar.

We assume that, for k<n—1, h:(E) x P,_,—E, were defined,
inductively. In case i =n, h,: (E,)" X P,_, = E, is defined as same as in Lemma
4.2.

Furthermore, it is easily verified by the constructions of h, and the locally
convex topology that these functions h, satisfy the conditions (a), (b),(c) of Definition
4.1.

LemMA 4.4. For each n > 3, E, is hyperconnected.

Proor. We assume that the index set 4 of the Hamel basis & is a well-ordered
set with the order <, and we introduce the lexicographic order to 4 x 4.

In case i=1, hy: E, x Py — E, is trivially defined.

In case i = 2, let x = (x;, x,)e(E,)* and t = (¢;, t,)e P;. First, we consider the

case that there is Fe &, such that x,, x,eF. Then h,: (E,)* x P, — E, is defined by
hz(x, t) = tlxl + t2x2.

Secondly, in case that there are F;e&,(i =1,2) such that x;eF,(i=1,2) and F,
= (Uggsens U Uggey pevesllanys Fo = (lypsis Uy Ug,,1s...stlg >, Where 1 <k<n—1,
a#Pjfork+1<i,j<nand oy S oyy < Sty Prag < Prap <o <P, Let
A={(u, B): k+1<i,j<n} be a subset of 4 x 4. Further let

X1 = Xig Uy, + e+ X 165 Uy, + xlak+luak+1 + o+ X 14, Ua,
Xy = Xg, Uy, + e+ X 205 Uay + X281+ 1 U1 + et X28,Upn

Then, since A is a well-ordered set, there exists

(tp Bp) = min{(x, )€ A: X1,%55 # O}

If xy,,%55,>0, the segment [x;,x,] and the plane Clhgysevns Uy Uy, + Ug,,
X2p,
X1, + X25,
If X,,,%25, <O, the segment [x,, X,] and the plane {u,,..., Uy, Uy, — Ug, Us,, 15e-0»

Ugyyys-ees Uy Upgypoeeesllp,>  CrOSS at £,x, +(1 —f)x, where i; =
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X
Uy,s Ug,, 1s---s U, > CTOSS at fyxy + (1 — fy)x,, where I; = ;c%qx' Then, for
284 lap
the point
2o = (F1 X 14, + (1 — ) X2 )y, + -+ + (F1 X104, + (1 — T1)X20,) >

h, is defined by

t i, —t .
.iZO+1—lx2 if0<t, <1y
fl fl

hy(x, t) =
1-— ty ty — Z-1

1—f120 l—flxl iff, <t, <1).
Thirdly, in case that there are F;e&,(i = 1,2) such that x;e Fi(i=1,2) and F;nF,
= {0}. Then h, is defined by the same method in the above; the case k = 0.

In case i=3 or i=k(k>4), h:(E) x P,_; = E, is defined as same as in
Lemma 4.3.

Furthermore, it is easily verified by the constructions of h, and the locally
convex topology that these functions A, satisfy the conditions (a), (b), (c) of Definition
4.1.

By Lemmas 4.2-4.4 and [2; Theorem 4.1], we have

THEOREM 4.5. For each neN, E, is hyperconnected. Therefore, E, is
AE(stratifiable).

§5. Adjunction spaces
It is obvious that:

PROPOSITION 5.1. Let X, Y be g-metric, A a closed subset of X and f: A — Y a
map. Then the adjunction spase X U Y is also o-metric.

Since the adjunction space of two stratifiable space is stratifiable
[1, Theorem 6.2], the following is obtained by the well-known method which uses
adjunction spaces (cf. [9]).

THEOREM 5.2. For a o-metric stratifiable space X, X is AR(o-metric stratifiable)
(resp. ANR) if and only if X is AE(o-metric stratifiable) (resp. ANE).

It is well known [9; pp178] that if X, A and Y are ANR (metric)s and f: 4 - Y
a map, then the adjunction space XU Y is ANR(metric) provided that it is
metrizable. This result was essentially proved in successive stages by Borsuk [3],
Whitehead [22] and Hanner [8]. For attempt to generalize this theorem, Hyman
[10] proved the case of Hyman’s M-spaces. Cauty [4] announced the case of
stratifiable spaces, but his proof was false. This was pointed out by San-nou
[21]. Therefore the case of stratifiable spaces is still open. Even the case of o-
metric stratifiable spaces is still open.
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ProBLEM 5.3. Let X and Y be two stratifiable spaces, 4 a closed subset of X

and f: A— Yamap. If X, A and Y are ANR(stratifiable)’s, is the adjunction space
X U ;Y ANR(stratifiable)?
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