アクセス数 : 1094 件
ダウンロード数 : 60 件
この文献の参照には次のURLをご利用ください : https://ir.lib.shimane-u.ac.jp/3368
島根大学総合理工学部紀要. シリーズB Volume 34
published_at 2001-03
A Weighted Sobolev-Poincare's Inequality on Infinite Networks
Murakami Atsushi
Yamasaki Maretsugu
full_text_file
c0020034r003.pdf
( 105 KB )
Descriptions
Inequalities on networks have played important roles in the theory of networks. We study the famous Sobolev-Poincare's inequality on infinite net-works in the weighted form. This inequality is closely related to the smallest eigenvalue of a weighted discrete Laplacian. We give a dual characterization for the smallest eigenvalue.
About This Article
Pages
Other Article