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Abstract. Inequalities on networks have played important roles in the theory
of networks. We study the famous Sobolev-Poincaré’s inequality on infinite net-
works in the weighted form. This inequality is closely related to the smallest
eigenvalue of a weighted discrete Laplacian. We give a dual characterization for
the smallest eigenvalue.

1. PROBLEM SETTING

Let X be a countable set of nodes, Y be a countable set of arcs and K be the
node-arc incidence matrix. Assume that the graph G := {X, Y, K} is locally finite
and connected and has no self-loop. For a strictly positive real valued function r
on Y , N := {G, r} is called a network.

Let L(X) be the set of all real valued functions on X, L+(X) be the set of all
non-negative u ∈ L(X) and L0(X) be the set of all u ∈ L(X) with finite support.
We denote by εA the characteristic function of the subset A of X and put εx := εA

in case A = {x}.
The discrete derivative du and the discrete Laplacian ∆u(x) of u ∈ L(X) are

defined by

du(y) := −r(y)−1
∑

x∈X
K(x, y)u(x),

∆u(x) :=
∑

y∈Y
K(x, y)[du(y)].

The mutual Dirichlet sum D(u, v) of u, v ∈ L(X) is defined by

D(u, v) :=
∑

y∈Y
r(y)[du(y)][dv(y)]
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if the sum on the right hand side converges. We call D(u) := D(u, u) the Dirichlet
sum of u and put

D(N) := {u ∈ L(X); D(u) < ∞}.
Notice that D(N) is a Hilbert space with the inner product

((u, v))D := D(u, v) + u(x0)v(x0),

where x0 is a fixed node. We set ‖u‖D = ((u, u))
1/2
D . We shall use the set of

Dirichlet potentials D0(N) which is defined as the closure of L0(X) in D(N).
Let m be a strictly positive real valued function on X and put

((u, v))m :=
∑

x∈X
m(x)u(x)v(x)

if the sum on the right hand side converges. We put ‖u‖m := [((u, u))m]1/2 and

L2(X; m) := {u ∈ L(X); ‖u‖m < ∞}.
We shall be concerned with the following weighted Sobolev-Poincaré’s inequality

on N :
(C; m) There exists a constant c > 0 such that

‖u‖2
m ≤ cD(u) for all u ∈ L0(X).

For simplicity, we use the function χm(u) on D(N) defined by

χm(u) :=
D(u)

‖u‖2
m

for u 6= 0

and χm(u) = ∞ for u = 0.
We shall consider the following extremum problem:

λm(N) := inf{χm(u); u ∈ L0(X)}.
Then it is easily seen that λm(N) is the best possible value of 1/c. Therefore
the weighted Sobolev-Poincaré’s inequality (C; m) is equivalent to the fact that
λm(N) > 0.

Let E+(∆) be the set of all λ > 0 such that there exists u ∈ L(X) satisfying the
condition:

(E) ∆u + λmu = 0 on X and u > 0 on X.

We shall give a characterization of λm(N) with the aid of E+(∆). Namely it will
be shown that E+(∆) is equal to the interval (0, λm(N)] and λm(N) = max E+(∆)
if λm(N) > 0.

For notation and terminology, we mainly follow [7].

2. Preliminaries

Given a finite subnetwork N ′ =< X ′, Y ′ > of N , we consider the following
extremum problem:

λm(N ′) := inf{χm(u); u ∈ S(N ′)},
where we set

S(N ′) := {u ∈ L(X); u = 0 on X \ X ′}.
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As in [8], we have

Lemma 2.1. For every finite subnetwork N ′ =< X ′, Y ′ > of N , there exists a
unique ũ ∈ S(N ′) which has the following properties:
(1) λm(N ′) = χm(ũ),
(2) ∆ũ(x) = −λm(N ′)m(x)ũ(x) on X ′.
(3) ũ(x) > 0 on X ′ and ‖ũ‖m = 1.

Theorem 2.1. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N . Then the
sequence {λm(Nn)} converges to λm(N).

Proof. We have
λm(N) ≤ λm(Nn+1) ≤ λm(Nn).

For any ε > 0 we can find u ∈ L0(X) such that χm(u) < λm(N) + ε. There exists
n0 such that u = 0 on X \Xn for all n ≥ n0. Thus λm(Nn) ≤ χm(u) for all n ≥ n0.
Hence {λm(Nn)} converges to λm(N).

3. A characterization of λm(N)

Let E+(∆) be the set of all λ > 0 such that there exists u ∈ L(X) satisfying the
condition:

(E) ∆u + λmu = 0 on X and u > 0 on X.

We shall prove

Theorem 3.1. Assume that E+(∆) 6= ∅. Then sup E+(∆) ≤ λm(N).

Proof. Let λ ∈ E+(∆). There exists u ∈ L(X) which satisfies Condition (E).
Consider an exhaustion {Nn}(Nn =< Xn, Yn >) of N . By Lemma 2.1, there exists
vn ∈ L(X) such that vn = 0 on X \ Xn, vn > 0 on Xn and ∆vn + λm(Nn)mvn =
0 on Xn. Put

P := (λ − λm(Nn))
∑

x∈Xn

m(x)u(x)vn(x).

Since ∆u + λmu = 0 on Xn, we have

P = −
∑

x∈Xn

vn(x)[∆u(x)] +
∑

x∈Xn

u(x)[∆vn(x)]

= −
∑

x∈X
vn(x)[∆u(x)] +

∑

x∈X
u(x)[∆vn(x)] −

∑

x∈X\Xn

u(x)[∆vn(x)]

= D(vn, u) − D(u, vn) −
∑

x∈X\Xn

u(x)[∆vn(x)]

= −
∑

x∈X\Xn

u(x)[∆vn(x)].

For each boundary node x of Xn(i.e., x /∈ Xn and x is a neighboring node of Xn),
we have

∆vn(x) =
∑

z∈Xn

t(x, z)vn(z) ≥ 0,

where
t(x, z) :=

∑

y∈Y
|K(x, y)K(z, y)|r(y)−1.
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Therefore P ≤ 0. Since u(x)vn(x) > 0 on Xn, we obtain λ ≤ λm(Nn). Our
assertion follows from Theorem 2.1.

This result was proved in [3] in case r = 1 and m = 1. To prove the converse of
the above result, we prepare

Lemma 3.1. Let 0 < λ < λm(N). For each a ∈ X, there exists a unique πa ∈ L(X)
which satisfies the following conditions:
(1) πa(x) > 0 on X.
(2) ∆πa(x) + λm(x)πa(x) = −εa(x) on X.

Proof. Notice that N is of hyperbolic type by Theorem 3.3 in [7]. Since 0 < λ <
λm(N), we see that D(u) > λ‖u‖2

m for every u ∈ D0(N) with u 6= 0. Let a ∈ X
and consider the following minimizing problem:

(P) ρ(a) := inf{D(u) − λ‖u‖2
m; u ∈ D0(N), u(a) = 1}.

Let {un} be a minimizing sequence, i.e., un ∈ D0(N), un(a) = 1 and D(un) −
λ‖un‖2

m → ρ(a) as n → ∞. Since λm(N)‖un‖2
m ≤ D(un), we have

D(un) − λ‖un‖2
m ≥ (1 − λ

λm(N)
)D(un),

so that {D(un)} is bounded. For every x ∈ X, there exists a constant M(x) >
0 such that |un(x)| ≤ M(x)[D(un)]1/2 for all n (cf. [10]). Therefore {un(x)}
is bounded. By choosing a subsequence if necessary, we may assume that {un}
converges pointwise to ũ ∈ L(X). It follows that ũ ∈ D0(N), ũ(a) = 1 and
ρ(a) = D(ũ) − λ‖ũ‖2

m. Notice that ρ(a) > 0. In fact, if ρ(a) = 0, then

λ =
D(ũ)

‖ũ‖2
m

≥ λm(N),

which is a contradiction.
Next we show that

(Q) ∆ũ(x) + λm(x)ũ(x) = −ρ(a)εa(x) on X.

For any real number t and any f ∈ D0(N) with f(a) = 0, we have

Φ(t) := D(ũ + tf) − λ‖ũ + tf‖2
m ≥ ρ(a) = Φ(0),

so that the derivative of Φ(t) at t = 0 vanishes, i.e., Φ′(0) = 0. It follows that

−
∑

z∈X
[∆ũ(z)]f(z) − λ((ũ, f))m = 0.

Taking f = εx (x ∈ X, x 6= a), we obtain ∆ũ(x) + λm(x)ũ(x) = 0. For f = ũ− εa,
we have

−
∑

z∈X
[∆ũ(z)](ũ(z) − εa(z)) − λ((ũ, ũ − εa))m = 0,

so that
∆ũ(a) + λm(a)ũ(a) = −D(ũ) + λ‖ũ‖2

m = −ρ(a).

Namely every optimal solution ũ of the problem (P) satisfies the above equation
(Q). We show the uniqueness of the solution of the equation (Q). Let ũ1, ũ2 be
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solutions of the equation (Q). Then v := ũ1 − ũ2 ∈ D0(N), v(a) = 0 and ∆v(x) +
λm(x)v(x) = 0 on X. Thus D(v) = λ‖v‖2

m, and hence v = 0. Therefore ũ1 = ũ2.
We show that ũ ≥ 0. Let v := |ũ|. Then v is a feasible solution of the problem

(P). We have D(v) ≤ D(ũ) and ‖v‖2
m = ‖ũ‖2

m, so that

ρ(a) ≤ D(v) − λ‖v‖2
m ≤ D(ũ) − λ‖ũ‖2

m.

Therefore |ũ| is also an optimal solution of the problem (P). By the above obser-
vation, we conclude that ũ = |ũ| ≥ 0.

It follows that ũ is a nonnegative superharmonic function on X. By the minimum
principle, we see that ũ(x) > 0 on X. Now we may conclude that πa(x) :=
ũ(x)/ρ(a) satisfies our requirement.

Theorem 3.2. Let 0 < λ < λm(N). Then there exists u∗ ∈ L(X) such that
u∗(x) > 0 on X and

∆u∗(x) + λm(x)u∗(x) = 0 on X.

Proof. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N and define un ∈ L(X)
by

un(x) := λ
∑

a∈Xn

πa(x)m(a).

Then un > 0 on X and

∆un(x)+λm(x)un(x) = λ
[

∑

a∈Xn

(∆πa(x) + λm(x)πa(x))m(a)
]

= −λm(x)εXn
(x)

for every x ∈ X. Notice that un is superharmonic on X. First we consider the
case where there exists b ∈ X such that {un(b)} is bounded. Notice that {un(x)}
is bounded for every x ∈ X by Harnack’s inequality (cf. Theorem 2.3 in [11]).
By choosing subsequences if necessary, we may assume that {un(x)} converges
pointwise to ũ(x). Then we have

∆ũ(x) + λm(x)ũ(x) = −λm(x),

so that u∗ := ũ + 1 satisfies our requirement.
Next we consider the case where there exists b ∈ X such that un(b) → ∞ as

n → ∞. We put vn(x) := un(x)/un(b). Then vn is positive and superharmonic
and vn(b) = 1. By Harnack’s inequality, we see that {vn(x)} is bounded for each
x ∈ X. Therefore we may assume that {vn} converges pointwise to ṽ. We see
easily that ṽ(b) = 1, ṽ > 0 on X and ∆ṽ(x)+λm(x)ṽ(x) = 0 on X. This completes
the proof.

J. Dodziuk and L. Karp [3] gave a proof for this theorem by using the reasoning
for manifolds in [4]. Their reasoning seems to contain a gap which occurs in the
discrete case.

By Theorems 3.1 and 3.2, we obtain

Theorem 3.3. If λm(N) > 0, then E+(∆) is equal to the interval (0, λm(N)] and
λm(N) = max E+(∆).
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Proof. By Theorem 3.2, we see that (0, λm(N)) ⊂ E+(∆). The fact that λm(N) ∈
E+(∆) follows from Theorem 6.3 in [7].

Theorem 3.4. Assume that λm(N) > 0 and that u∗ ∈ D0(N) satisfies the differ-
ence equation:

∆u∗(x) + λm(N)m(x)u∗(x) = 0 on X.

Then χm(u∗) = λm(N).

Proof. There exists a sequence {fn} in L0(X) such that ‖u∗−fn‖D → 0 as n → ∞.

λm(N)‖u∗ − fn‖2
m ≤ D(u∗ − fn) → 0

as n → ∞, so that {fn} converges weakly to u∗ both in L2(X; m) and D0(N)
By our assumption, we have D(u∗, fn) = λm(N)((u∗, fn))m, and hence D(u∗) =
λm(N)‖u∗‖2

m.

4. An Example

Let G = {X, Y, K} be the binary tree rooted at x0 and r = 1 on Y (cf. [9]).
Denote by d(x0, x) the geodesic distance between x0 and x (i.e., the number of arcs
in the path connecting two nodes x0 and x) and let Zk := {x ∈ X; d(x0, x) = k}
and

Qk := Zk 	 Zk−1 = {y ∈ Y ; K(x, y)K(x′, y) = −1 for x ∈ Zk and x′ ∈ Zk−1}.
Then we have Card(Zk) = 2k for k ≥ 0 and Card(Qk) = 2k for k ≥ 1, where
Card(A) stands for the cardinality of a set A.

We shall determine λm(N) in case m = 1. For simplicity, we put ‖u‖ = ‖u‖m.
Let us define a subset L(X; d) of L(X) by u ∈ L(X; d) if and only if u(x) = uk for
all x ∈ Zk. For u ∈ L(X; d), we have

∆u(x0) = −2u0 + 2u1 (x ∈ Z0)

∆u(x) = −3uk + 2uk+1 + uk−1 (x ∈ Zk; k = 1, 2, · · · ).
Let us find a contant λ > 0 and a function u > 0 on X which satisfy ∆u(x) +
λu(x) = 0 on X. First consider the following difference equation:

(DE) 2uk+1 − (3 − λ)uk + uk−1 = 0 (k = 1, 2, · · · ).
Let us put λ∗ := 3 − 2

√
2. This value gives a double solution for the equation:

2t2 − (3 − λ∗)t + 1 = 0.

We see easily that

u∗
k = (α + βk)(

1√
2
)k (k = 0, 1, 2, · · · )

is a general solution of the difference equation (DE) with λ = λ∗. Determine α and
β so that u0 = 1 and −2u0 + 2u1 = −λ∗u0. Then we obtain

u∗
k :=

[

1 + (1 − 1√
2
)k

]

(
1√
2
)k
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for k = 0, 1, 2, · · · . Define u∗ ∈ L(X; d) by {u∗
k}. Then λ∗ and u∗ satisfies our

requirement. Therefore we have λ1(N) ≥ 3 − 2
√

2 by Theorem 3.1.
To prove the converse inequality, we consider a sequence {u(n)} in L(X; d) de-

fined by

u
(n)
k :=

{

(1/
√

2)k for 0 ≤ k ≤ n
0 for k ≥ n + 1

Then u(n) ∈ L0(X) and

‖u(n)‖2 =

n
∑

k=0

2k[u
(n)
k ]2 = n + 1

D(u(n)) =

n
∑

k=0

2k+1[u
(n)
k − u

(n)
k+1]

2

= 2(1 − 1√
2
)2n + 2.

Thus we have

λ1(N) ≤ D(u(n))

‖u(n)‖2

= 2(1 − 1√
2
)2 n

n + 1
+

2

n + 1

→ 2(1 − 1√
2
)2 = 3 − 2

√
2 (n → ∞).

Therefore we have

Theorem 4.1. Let G be the binary tree rooted at x0 and let r = 1 on Y and m = 1
on X. Then λm(N) = 3 − 2

√
2.

Notice that we have ‖u∗‖2 = ∞.

REFERENCES

[1] N.L. Biggs, B. Mohar and J. Shawe-Taylor, The spectral radius of infinite graphs, Bull.
London Math. Soc. 20(1988), 116-120.

[2] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random
walks, Trans. Amer. Math. Soc. 284(1984), 787-794.

[3] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Con-
temporary Math. 73(1988), 25-40.

[4] D. Fisher-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-
manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. 33(1980), 199-211.

[5] J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J.
69(1993), 487-525.

[6] P. Gerl, Random walks on graphs, Lecture Notes in Math. 1210(l986), 285-303, Springer,
Berlin.

[7] A. Murakami and M. Yamasaki, Inequalities on infinite networks, to appear in Mem. Fac.
Sci. Eng. Shimane Univ. Ser B: Mathematical Science 33(2000), 47-62.

[8] Y. Shogenji and M. Yamasaki, Hardy’s inequality on finite netwoeks, Mem. Fac. Sci. Eng.
Shimane Univ. Ser B: Mathematical Science 32(1999), 75–84.



52 ATSUSHI MURAKAMI AND MARETSUGU YAMASAKI

[9] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J.7(1977), 135–
146.

[10] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Shimane Univ. 13(1979),
31–44.

[11] M. Yamasaki, The equation ∆u = qu on an infinite network, Mem. Fac. Shimane Univ.
21(1987), 31–46.

Department of Mathematics, Hiroshima Institute of Technology, Hiroshima,

731-5193 JAPAN

E-mail address : atsumura@cc.it-hiroshima.ac.jp

Department of Mathematics and Computer Science, Shimane University, Mat-

sue, 690-8504 JAPAN

E-mail address : yamasaki@math.shimane-u.ac.jp


