| ファイル情報(添付) | |
| タイトル |
混合マルコフ過程を応用した本数曲線の誘導
|
| タイトル |
Derivation of Tree-Number Curve Applied the Markov Chain Theories
|
| タイトル 読み |
コンゴウ マルコフ カテイ オ オウヨウシタ ホンスウ キョクセン ノ ユウドウ
|
| 著者 |
稲田 充男
|
| 収録物名 |
島根大学農学部研究報告
Bulletin of the Faculty of Agriculture, Shimane University
|
| 巻 | 24 |
| 開始ページ | 17 |
| 終了ページ | 20 |
| 収録物識別子 |
ISSN 0370940X
|
| 内容記述 |
抄録・要旨
Applying the Markov Chain theories,the auther derived the formual for treenumber curve in even-aged forest stands. The assumptions for this derivation are that a forest tree will be cutted when the cumulative cutting condition for the tree counts k times,and that each tree of the stand will increases its condition M times in average for a unit time interval. Under these assumptions, the auther derived the probability functions
f_k(t)=(<(Mt)>^k)/(k!)・exp[-Mt] F_k(t)=(M<<(Mt)>_k>^-1)/((k-1)!)・exp[-Mt], where f_k(t) is the probability function which the cutting condition for a tree counts k times across during t unit time interval. f_k(t) is the probability function which the cutting condition for a tree counts k times at exactly t time unit. This F_k(t) gives the life span distribution of forest trees. According to this life span distribution, the auther derived the probability function r(j)=<∫_j>^∞ (M<(Mt)>^<k-1>)/((k-1)!)・exp[-Mt] dt, where r(j) is the probability which a tree will remain over j years old. This function is reduced to the well-known X^2 distribution. Multipling r(j) and the initial number of trees N_0, we can estimate the tree-number curve in an eyen-aged forest stand. |
| 言語 |
日本語
|
| 資源タイプ | 紀要論文 |
| 出版者 |
島根大学農学部
Shimane University, Faculty of Agriculture
|
| 発行日 | 1990-12-21 |
| アクセス権 | オープンアクセス |
| 関連情報 |
[NCID]
AN00108015
|