混合マルコフ過程を応用した本数曲線の誘導

島根大学農学部研究報告 Volume 24 Page 17-20 published_at 1990-12-21
アクセス数 : 991
ダウンロード数 : 58

今月のアクセス数 : 91
今月のダウンロード数 : 1
File
d0030024n004.pdf 533 KB エンバーゴ : 2001-10-08
Title
混合マルコフ過程を応用した本数曲線の誘導
Title
Derivation of Tree-Number Curve Applied the Markov Chain Theories
Title Transcription
コンゴウ マルコフ カテイ オ オウヨウシタ ホンスウ キョクセン ノ ユウドウ
Creator
Inada Mitsuo
Source Title
島根大学農学部研究報告
Bulletin of the Faculty of Agriculture, Shimane University
Volume 24
Start Page 17
End Page 20
Journal Identifire
ISSN 0370940X
Descriptions
Applying the Markov Chain theories,the auther derived the formual for treenumber curve in even-aged forest stands. The assumptions for this derivation are that a forest tree will be cutted when the cumulative cutting condition for the tree counts k times,and that each tree of the stand will increases its condition M times in average for a unit time interval. Under these assumptions, the auther derived the probability functions
f_k(t)=(<(Mt)>^k)/(k!)・exp[-Mt]
F_k(t)=(M<<(Mt)>_k>^-1)/((k-1)!)・exp[-Mt],
where f_k(t) is the probability function which the cutting condition for a tree counts k times across during t unit time interval. f_k(t) is the probability function which the cutting condition for a tree counts k times at exactly t time unit. This F_k(t) gives the life span distribution of forest trees. According to this life span distribution, the auther derived the probability function
r(j)=<∫_j>^∞ (M<(Mt)>^<k-1>)/((k-1)!)・exp[-Mt] dt,
where r(j) is the probability which a tree will remain over j years old. This function is reduced to the well-known X^2 distribution. Multipling r(j) and the initial number of trees N_0, we can estimate the tree-number curve in an eyen-aged forest stand.
Language
jpn
Resource Type departmental bulletin paper
Publisher
島根大学農学部
Shimane University, Faculty of Agriculture
Date of Issued 1990-12-21
Access Rights open access
Relation
[NCID] AN00108015