島根大学理学部
島根大学理学部紀要

アクセス数 : 1197
ダウンロード数 : 83
島根大学理学部紀要 Volume 24
published_at 1990-12-25

R^3×S^1の共形的コンパクト化

Conformal Compactification of R^3×S^1
Matsunaga Hiromichi
full_text_file
c0010024r002.pdf ( 344 KB )
Descriptions
 In this article a conformal compactification of the space R^3 x S^1 is obtained, (§2) . In §3 a decay property of the curvature is given, and in §4 the maximum principle is applied and we discuss removable singularities. In §3, 4 we depend heavily on the elaborated works by Uhlenbeck, [2] , [4]. The result of this article is used to study symmetry breaking at infinity [3].