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A conformal compactification of R x S is obtained and we discuss removable
singularities.

§1. Introduction

In this article a conformal compactification of the space R® x S' is obtained,
(§2). In §3 a decay property of the curvature is given, and in §4 the maximum
principle is applied and we discuss removable singularities. In §3, 4 we depend
heavily on the elaborated works by Uhlenbeck, [2], [4]. The result of this article is
used to study symmetry breaking at infinity [3].

§2. Compactification

Let B3 be the open kernel of the unit disc B} in the euclidean space
R3. Denote by I: (B3 — 0) x §' - (R® — B}) x S* the product of the inversion and
the identity mapping. Then I(x, t) = (x/|x|?, t) for (x, t)e(Bi — 0) x St, and

I*(dy? + dy2 + dy? + dt®) = (dx3 + dx3 + dx3)/|x|* + dt?,

which is conformally equivalent to the metric dx} + dx3 + dxj + |x|*dt?. Using
the polar coordinates (r, 6, ¢) in R® we have metrics dr’ +1*(d6” + sin? 0d¢?)
+74dt?, and dr?/r* + d6? + sin?@d¢ + r*dt>. The substitution r = e™" gives the
coordinates in which the metric is given by dt2 + d6? + sin? 0d¢> + e~ **dt*>. Thus
the space (R® — B}) x S! is conformally equivalent to the warped product space 52
x ([0, o) x ;S'), where f(r)=e"" [1]. Denote by <,> and {,), the inner
products in the space S! and (1) x §* = §% x ([0, c0) x 81 respectively. Then
{d/dt, 8)oty, = e *d/dt, 8/dty. Therefore (d/0t, d/dt). tends to zero as - O
and hence S2 x (1) x ;S! tends to the 2-sphere, say S7,. Thus the space 52
x ([0, ) x ;S)US?2 gives a conformal compactification, but the limit set S% is
possibly singularities. By Mayer-Vietoris exact sequence of homology groups we
can see that the compactification is homotopically a 4-sphere.
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§3' tlilgIF(ga ¢9 Ty t)lf =0

Denote by | |, the norm in the space §? x ([0, o) x (S'). Consider a dilation
n:r—rf/o for a >0, then the metric tensor is a diagonal matrix with entries
(67%r*,67%,67%,07%). Let F=F, +F, be the curvature of a connection A,
where F, = Zao, dt,dx; and F, =) b;dx;, dx;. Then by the dilation 7, their

norms and the volume form are transformed as
|Fyl} — o®|F, |3, |Fyl} — o*|F,|; and w;— 077w,

Now we need several lemmas for Coulomb gauge (Hodge gauge). Let ||F|, | 4]
denote max|F|, max|A| respectively.

LemMA 1 [4]. Let n be a bundle ober S*> x S with a covariant derivative D,
curvature F.  There exists yo > 0 such that if | F |, <y, then there exists a gauge in
which D=d + A, d*A =0, and |A|l, < K| F| .

Proor. We have a modified form of Proposition 9.33 in [2], then follow the
proof of Theorem 2.5 in [4].
Similarly to Theorem 2.8 in [4] we have

LEMMA 2. Let D be a covariant derivative in a bundle over U = {xe(B* — 0)
x 8';1<r <2}, where the diameter of B* > 2. There exists Yy >0 such that if
|Fllo Sy, then there exists a gauge in which D =d + A, d*4 = 0.

PROPOSITION 3. Let D be a connection on B, in U, self-dual with respect to a
metric and assume ||Fp|. <e Then there exists an L3-gauge such that D = d
+ A, A is C* in the half sinzed ball B,,, and the estimate

” A “Ck(Bl/z) C ” F ”LZ(B ).

Proor. By Lemma 2 we have a Coulomb gauge and follow the proof of
Proposition 8.3 in [2]. ‘

Now we proceed to get our main result in this section. By using the dilation
for 0 <o <1 we have

06(|F1|% + lelf") =< 06|F1|; + 0'4,F2|} éf (0|F1|} + O'_IIFZI})(DJ‘
TolgesTHl

_S_'U_IJ ' (|F1|} + IFZI})wf'
T-15ts57+1
Then for a sufficiently large 7,

|F|}S(1/a7)J‘ IFI}wf—>0 as T — 0,
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where we have assumed that J |F|?> < 0 and the connection is self-dual.
R3xS!
Thus we have
THEOREM 4. If |F|?> < oo and the connection is self-dual, then

R3xS!

lim |[F©, 6,7, 0], = 0.

§4. Maximal principle and removable singularities

First we calculate the scalar curvature of a funnel shaped cylinder with metric
d6* + sin®0d¢? + dr® + e~ **dt>. The curvature of the funnel shaped surface with
metric dt® + e~ 2"di? is :

{ee " (1+e ) ¥ 1 =(1+e ¥ =1 mode .

Then the required scalar curvature is 2 x 1 4+2 x 1 =4 mode™?". The space R>
x S! is conformally flat and if the curvature is self-dual, then by Weitzenbock

formula, for any y < 2/\/3
|F(0: ¢’ T, t)lf—<_— (lén?')l()lF(0> ¢9 f’ t)lj‘ ey(?—-r) + (lgltﬁa)t()lF(ea ¢>s Tns t)lj‘ eY(r_t”)
for 7 < 7 < 1, (see Appendix D in [2]). On a subspace S* x (7) x ;S' we choose an
exponential gauge and a transverse gauge A, =0, then as in Lemma D in [2],
|4, ¢, 1, 1), < Ce™ P on 127  for a sufficiently large 7 (#).

By (+) above if e < ¢°, then |A(x, )|, < Cr'~* for r=|x|. Fori=e™", 127

and (/™Y <r " £r 2, then

[\
v

7

|F(x, t)|, < Cr'~2.

The volume element is w, = r*sin Odrdfd¢dt, then F is bounded in L” for p <5/
(2—9)(>4). Then the assumption in Theorem 4.6 in [4] is satisfied. Using the
" construction of the broken Hodge gauge we have a Coulomb gauge, and obtain an
elliptic system as in the final part of the appendix in [2].

Now we need to define a ‘smooth structure’ on the limit set $%. For yeS2,
the operator d/0r is defined by

a/orA(y) = 11_1}3 0/orA(y, r, t) and similarly for 9/06, 0/0¢.

These operators are indetendent of ¢ because by the relation (d/dt, 9/0t), -0 as ©
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— o0, (0/0t), and 0/dt(A(y, r, t)) tends to zero. Using the method of Proposition
8.3 in [2] the regularity follows and the extention of the connection to the
compactification is obtained.
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