アクセス数 : 1586 件
ダウンロード数 : 68 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.24568/52524
島根大学総合理工学部紀要.シリーズB 54 巻
2021-01-30 発行
DISCRETE MULTI-HARMONIC GREEN FUNCTIONS
本文ファイル
DISCRETE MULTI-HARMONIC GREEN FUNCTIONS
( 120 KB )
内容記述
The harmonic Green function ga of an infinite network defined as the unique Dirichlet potential which satisfies Δga = −δa. The biharmonic Green function ga(2) (x) is defined by the convolution of gx and ga in [6]. It is known that Δ2ga(2) = δa if ga(2) is finite and that ga(2) is a Dirichlet potential if ga has a finite Green energy. In this paper, we define the k-harmonic Green function ga(k) (x) as the convolution of gx(k−1) and ga if it converges. We study some potential theoretic properties related to ga(k).
About This Article
Doi
https://doi.org/10.24568/52524
Pages