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ABSTRACT. The harmonic Green function g, of an infinite network defined as

the unique Dirichlet potential which satisfies Ag, = —d,. The biharmonic Green
function g\ (x) is defined by the convolution of g, and g, in [6]. It is known that
AQg,(IQ) =4, if géz) is finite and that 932) is a Dirichlet potential if g, has a finite
Green energy. In this paper, we define the k-harmonic Green function ggk) (x)

as the convolution of gg(ckfl) and g, if it converges. We study some potential

theoretic properties related to ggk).

1. INTRODUCTION WITH PRELIMINARIES

Let NV = (V, E, K, r) be an infinite network which is connected and locally finite
and has no self-loop, where V is the set of nodes, E is the set of arcs, and the
resistance r is a strictly positive function on E. For x € V and for e € E the
node-arc incidence matrix K is defined by K(x,e) = 1 if z is the initial node of
e; K(x,e) = —1 if  is the terminal node of e; K(z,e) = 0 otherwise. Let L(V)
be the set of all real valued functions on V; L (V) the set of all non-negative real
valued functions on V', and Lo(V) the set of all uw € L(V') with finite support. We
similarly define L(E), LT(E), and Lo(E). For u € L(V) we define the discrete
derivative Vu € L(E) and the Laplacian Au € L(V') as

Vu(e) = —r(e)™" Z K(x,e)u(z),

zeV

Au(z) = Z K(z,e)Vu(e).
eck
For convenience we give specific forms. For e € E let 2t € V be the initial node
of e and x~ € V the terminal node of e. Then
u(z™) —u(z™)

r(e)
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For z € V let {ey,...,eq} be the set of arcs adjacent to = and let y; be the other
node of e; for each j. Then

We denote by
A% = u, AFy = A(AM )
for k € N. For u,v € L(V') we put

(u,v)p = Z r(e)Vu(e)Vu(e),

eeE

|ullp = (u,u)yy” (Dirichlet sum),

(u,v)p = Z u(z)v(x),

lulle = (u, u)d”.

We define two classes of functions on V as
D={ueL(V)||[ulp < oo},
H® = {u e L(V) | A*u=0on V}.

Note that (u,v)p is a degenerate bilinear form in D; for example, (1,u)p = 0
and |lu + 1||p = ||u|lp for u € D, where 1 stands for the constant function. It
was shown in [5, Theorem 1.1] that D is a Hilbert space with respect to the inner
product (u,v)p +u(o)v(o) for a fixed node o € V. We easily verify that a sequence
{tun}n C D converges to u in D if and only if lim, . ||u, — u||p = 0 and {u,},
converges pointwise to u. Denote by Dy the closure of Ly(V) in D. We call a
function in D and in Dy a Dirichlet function and a Dirichlet potential, respectively.
We always assume that the network is hyperbolic, i.e., for each a € V' there exists
the harmonic Green function g, with pole at a. Also we assume that the network
satisfies the following condition: There exists a constant cp > 0 such that

(LD) [Afllb < cupllfllp forall f e Lo(V).

We define the k-harmonic Green function g((lk) (x) in Section 2 as a convolution of

gg(ck_l) and g, and study some fundamental relations between these functions under

the assumption that gék) is finite. In Section 3 we see that gék) is a Dirichlet potential
if N satisfies conditions (LD) and (CLD) studied in [2]. Some potential theoretic
results related to multi-harmonic Green functions in Section 4. We propose some
sufficient conditions which assure the finiteness of gék) in case where N does not
satisfy (LD) or (CLD) in Section 5. As for the limit of {ggk)}k, we show a partial

result in Section 6. The explicit form of gc(lz) is given in Section 7 for the infinite
linear network and in Section 8 for the homogeneous tree of order three.
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2. MuLTI-HARMONIC GREEN FUNCTIONS

We construct an multi-harmonic Green function as follows. For a € V' let g((zo) =

da, where ¢, is the characteristic function of the singleton {a}, and let 95" be the
harmonic Green function g, of N’ with pole at a € V, i.e., g, € Dg is a unique

function with Ag, = —d,. For k > 2 we define the k-harmonic Green function gék)

of N with pole at a as the convolution of ¢!

9" () = (g%, ga)e

and g, i.e.,

if it converges.
Theorem 2.1. If g((lk) is finite, then g((zk)(b) = gék) (a) for every a,b e V.

Proof. 1t is obvious for k¥ = 0. It is well-known that ga(b) = gy(a) holds, which

shows the case k = 1. Let k > 2 and assume g’ (b) = gb )(a) for j < k —1 and for
a,b € V. Then

Zg(k 1) (2)g (x)ZZga ng 2)

zeV zeV yeVv
=33 gu@)gl P (@)ay) =Y 98V W)a(y)
yeV zeV yev
k
=g (a).

Corollary 2.2. g((lk)(fb) = (g((zkfl),gzﬁ?.

Lemma 2.3. If gl(lk) 1s finite, then gék)

—gék 2 for k> 1.

1s superharmonic and satisfies Aggk) =

Proof. Theorem 2.1 shows that

AgiP(x) = (Agy(2))gl D (y) = =) d,(x)g"

yev yev

as required. l
Theorem 2.4. If g is finite, then A*g{¥ = (—1)%5,.
Proof. Applying Lemma 2.3 repeatedly we have the result. U

Proposition 2.5. If g™ is finite, then g((lkJ’l)(b) <g((zk),g£l)> .
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Proof. We show it by induction on [. It is obvious for each £ if [ = 0. We assume
the assertion holds for [ — 1. Then

k‘f‘l) Z g(k—H 1) Z Z gak) C(El 1) )gb(x)

zeV zeV yeV
l
S ) WRIEIERS wON L
yev zeV yev
= (9. 9"
O
Proposition 2.6. If ga ,gb) € Dy, then <g((lk),gél)>D = g((lk”_l)(b).
Proof. Note that (u,v)p = —(u, Av)p for u,v € Dy (see [4, Lemma 3]). Using
Lemma 2.3 and Proposition 2.5, we obtain
! _
(0899 )p = —(a, 8g)e = (9.9 e = gV 0.
O

3. CONDITIONS FOR ga ) e Dy

For pu,v € LT (V) we define the Green potential Gu and the mutual Green energy
G(p,v) by

Gu(x) = (gas )2,
G(p,v) = (Gu,v)pe.
Let
M={peL*(V)|Gu<ooonV},
E={peL™(V)]|G(u,p) < oo}
Corollary 2.2 shows that

Lemma 3.1. gék) = Gg((lk_l).

We recall a lemma.

Lemma 3.2 ([6, Lemma 3.1]). Let p € LY(V). If Gu € D, then p € €, Gu € Dy,
and ||Gullp = G, u)-

Proposition 3.3. ga e D implies ga € Dy.
Proof. Since ga e L*(V), Lemmas 3.1 and 3.2 show the assertion. O

Theorem 3.4. gék) € Dy if and only if gc(lkfl) € &£. In this case the formula
19112, = G, ¢ holds.

Proof. First assume ga E Dy. Lemmas 3.1 and 3.2 show ga D ¢ €. Next assume
g((lk Y e & Then Gga ) e D, by [5, Theorem 5.2|. Lemma 3.1 implies g((lk) € Dy.

In this case Lemma 3.2 shows [|g{”[|12 = G(g%F™, g1). O
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Lemma 3.5. D, N H® = {0}.

Proof. Let u € DoNH® and u; = Ay for 0 < j < k. Then u; € Dg by [1, Lemma
3.1]. Since uy, = 0, we have u;,_; € Do N HW, so that u,_; = 0 by [5, Lemma 1.3].
Repeating this argument we have u = ug =0 U

Corollary 3.6. If g((lkfl) € &, then g((lk) is the unique function u € Dy with AFu =
(—1)%6,.

Proof. Theorems 3.4 and 2.4 show that g((lk) € Dy and Akg((lk) = (—1)%6,. Lemma
3.5 implies the uniqueness. 0

We introduced in [2] the following condition: There exists a constant corp > 0
such that

(CLD) ||fHD < CCLD”AfHD for all f - L(](V)
We need a lemma.

Lemma 3.7 ([2, Theorem 3.2]). If (LD) and (CLD) are fulfilled, then Do N
LY(V)=¢E.

Theorem 3.8. If (LD) and (CLD) are fulfilled, then ¢\ € & for k € N.

Proof. Since gc(bl) € Dy, Lemma 3.7 implies g((ll) € &£. Theorem 3.4 shows gff) € D,.
Repeating this argument, we have our assertion. 0

4. MuLTI-HARMONIC GREEN POTENTIAL

We define the k-harmonic Green potential G®y of € L*(V) and the mutual
k-harmonic Green energy G* (u,v) of p,v € L*(V) as

GWu(z) = (o, we,
GO(11,v) = (GPp, Ve
It is obvious to see that
GVpu=Gu,  GV(uv) =G, v).
We put
ME =L e LT(V) | GWp < 0o on VY,
EW = {ue L* (V)| GW(u, p) < oo}

Proposition 4.1. For u,v € LT(V) we have

(2) G(k+l)u — G(k)G(Z),u if,u c M(kH);
(3) G* D (p,v) = (GPp, GOV .
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Proof. Lemma 2.3 shows

AGH p(x) = A 9P ()u(y) = (Mgl (2))u(y)

yev yev

= =3 gV @uly) = -G V().

yeVv

Proposition 2.5 implies

G Z gD () u(y) = Z Z g:(ck)(z)gél)(zm(y)

yev yeV zeV
= gV ()G p(z) = GPGOp(x).
zeV

By Proposition 2.5 again

G(kH) M I/ Z Zg k+l (y)

zeV yeVv

=358 00 () () () v (y)

zeV yeV zeV

= > (@) (Cw(z).

zeV

Corollary 4.2. The following statements hold:
(1) € MED if and only if GOp € M®;
(2) gl(lkH) is finite if and only if g((f) c M*),
(3) p € E**D 4f and only if (G® u, GOp)p converges.

Proof. Proposition 4.1 (2) and (3) immediately show (1) and (3). Using Lemma
3.1 and Proposition 4.1 (2) we have g — GW gD which shows (2). O

5. SUFFICIENT CONDITIONS FOR THE FINITENESS OF MULTI-HARMONIC
GREEN FUNCTIONS

Even in the case where A does not satisfy (LD) or (CLD), some conditions are
sufficient to assure the finiteness of multi-harmonic Green function. We say that
condition (GB) is fulfilled if

(GB) cgp = sup G1(x) = sup Z 9:(y

zeV xGV

Proposition 5.1. (GB) implies gtk (y) < kg for k> 1.

Proof. Let (GB) be fulfilled. We show that gg(;k)(y) < ¢k for z,y € V by induction

on k. The base case k = 1 is trivial. Assume that gg(gk_l)(y) < c’é%l for x,y € V.
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Then
*) y) = Zgik_l)@) ) < Ck : Zgy - CGBlGl( ) < cGp-
zeV zeV
O
Let
- Z gz (y)2
yev

and consider a condition
(SG) B = Zﬁ(m) < 0o

zeV

Proposition 5.2. (SG) implies ¢” (y)2 < B(z)B(y)B 2 for z,y € V and for
k> 2.

Proof. We show the assertion by induction on k. If k = 2, then

9Py <Zgz 2)gy (2 ) < (ng(ﬁ) (Zgy(2)2>

= B(x)B(y).
Suppose that gg(f“'_l)(y)2 < B(z)B(y)B*3 for x,y € V. Then

Dy)? = (ng(z)gzﬁ’“)(z)> < (Z gx(2)2> (Zgé“)(2>2>

()3 B)B(z)B** = B(2)B(y) B+

zeV

0

Corollary 5.3. (SG) implies ¢ (y) < B*/ for z,y € V and for k > 2.

Proposition 5.4. 1 € €& implies g, € € forxz € V.

Proof. Since g,(y) < g.(x) for all y € V,

G(gz:92) = YD 9y(2)92(2)9:(y) < g2(2)*G(1,1).
yeV zeV

0

Proposition 5.5. (GB) implies g, € € forx € V.

Proof. (GB) shows g,(z) < cgp, and that

g:pag:r :Zzgy gm g:r < CGBZQ:D )Zgz(z) < C?(’;B-
yeV zeV yev zeV

0

Proposition 5.6. (SG) implies g, € € for x € V.
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Proof.

g(zzgy<z>2) (zzgx )
(g)ures

6. THE LiMIT OF MULTI-HARMONIC GREEN FUNCTIONS

We give some general results related to the limit function of { g((lk)} k- Propositions
5.1 and 5.2 show

Theorem 6.1. Ifcgg < 1 or B < 1, then limy_,o gg(gk) (y) =0.

Lemma 6.2. Let {uy}r be a sequence of non-negative superharmonic functions on
V. If img oo ug(x9) = 00 for some xog € V, then limy_ o ug(x) = oo for each
reV.

Proof. Let z1 be anode adjacent to xy. Let {ey,...,eq_1} be the set of arcs adjacent
to z; and let y; be the other node of e; for each j. We assume yy = xo. Since

Aug(r) = Y525 r(e;) ™ (un(y;) — ue(r1)) < 0, we have

r(eo) ™ up (o) Z r(e;) " un(y;) < <Z (e5)” 1) ug (1),

7=0

which implies limy_, o, ux(x1) = co. Repeating this argument, we have the assertion.
O

Proposition 6.3. If gg(glf)‘))(xo) > 1 for some xg € V and ky € N, then
limy, o0 gg(ck) (y) = oo for each z,y € V.

Proof. By Proposition 2.5 we have

=> g (y) > gV (2)g ()

yeVv

for | < k. Let a = gg(c’;O)(:Uo) > 1. For each k € N we take p,q € NU {0} such that
k = pko+ q and 0 < q < ky. We have

9% (w0) > a” - gD (20) > o - min g\%)(zg) — o0
0<g<ko

as k — o0o. Lemma 6.2 implies limy_, gg(c )(I0> = limy_0o g;(rl;)(x) = oo. Using

Lemma 6.2 again, we have limy_,, g;gk) (y) = oc. O
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Let

(@R
AN) = f{||f<fv>||,2 e LO(V)}

and recall the following:

Lemma 6.4 ([3, Theorem 3.3]). The largest number of A > 0 for which the equation
Au+ du =0 has a positive solution is equal to A(N).

Theorem 6.5. Assume A(N) < 1. If u(z) := limg_eo gtk (x) 1s finite for each
r eV, thenu=0.

Proof. Lemma 2.3 shows Au = —u, which means that the equation Au + Au = 0
has a non-negative solution for A = 1. Lemma 6.4 implies u = 0. U

Lemma 6.6. If g, < g[(f) on 'V, then gflk) < g((zkﬂ) on V. Especially, u(x) =
limy_se0 g3 (x) exists for each x € V and 0 < u(z) < oo.

Proof. We show the assertion by induction on k. The base case k = 1 is the
assumption. Assume that gék_l) < gék) on V. Then

ggk)(l') = <gC(L )7goc>l2 < <g((z )7gm>l2 - QO(L]H_I)( )

Let u(x) = limyg_, o g((lk)(a:). Then u(z) > gq(z) > 0. O

7. THE CASE OF THE LINEAR NETWORK

Let N = (V, E, K, r) be the linear network; V = {x, |n >0} and E = {e, | n >
1}. Let K(xp—1,6e,) =1 and K(xp,e,) = —1 for each n > 1, and let K(z,e) =0
for any other pairs. Suppose » 72, r(e;) < oo and let p, := Z;o ni17(€5). Then

pm 0 <n<m;
pn ifn>m,

NmPn + P Yot P+ D P70 <0< m;
92 (x) = { mp, + 372, 03 it n = m;
MPmPn + P X i P+ Dgen P71 >m,

g5 (o) Zp]poJrZ (anpﬁZp]) P

7.1. In the Case r(e,) = n=®. We show g{” € L(V) \ Dy.

Proposition 7.1. Ifr(en) =n=® forn > 1 with3/2 < o < 5/3, then g&) (x,) < 00
for each m and n and gwo ¢ Dy.
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Proof. Observe that

(1) % < pn < gl_al
n—1 1 -
(2) jzopjz (@—1)(2—@)((n+1) _1)7
2 S . 1 n 4-3a n 2—2a
) A2 Gy D e )

for n > 1. Since 2(1 — a) < —1, (1) shows that > °°(p? < oo, which assures
gt () < 0o for each m and n. Since 4 — 3w > —1, (3) implies that g (xg) = 0.
Proposition 2.6 shows gg(ci) ¢ Dy. U
7.2. In the Case r(e,) =t".

Lemma 7.2. Ifr(e,) =t" with 0 <t <1, then
t 22 +1)
CGB = 773 = :
(1 —1)? (I—t)*(1+1¢)2
Proof. Let c(z) = 3 .y g:(y). Then cgp = sup,ey c(x). We know that p, =
t"*1 /(1 —t) and

00 mtmT1 > ¢+l
Tm) =) G (20) mpm*an— _ +Zl—t
n=0 n=m

i g+
—: "=
We easily have that {c(z,,)}n decreases and that

t
cgp = c(xg) = a0

Next we have
th(m-H) % 42(n+1)

mt2(m+1) t2(m+1)
BN RN T )

mi2(m+1) 12(m+1) B t2(t2 +1)
B = Z( 1—1t)2 (1—t)2(1—t2)>_(1—t)4(1+t)2'

and

O

There exists a unique solution ¢t = t; ~ 0.428 to B = 1 with 0 < ¢ < 1. Theorem
6.1 shows that

Proposition 7.3. If r(e,) = t" with 0 < t < t, then limy_, ggf,z (x,) = 0.
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Remark 7.4. There exists a unique solution t = t] ~ 0.382 to cgg = 1 with

0 <t < 1. Theorem 6.1 shows that limy_,. g&’f,i(a:n) =0if 0 <t < t); thisis a
weaker result than Proposition 7.3.

Proposition 7.5. Assume that {gg;)(xn)}k converges to a finite value u(x,) for
each n. If r(e,) = t" with ty ~ 0.4331 <t < 1, then u(zx,) = 0.

Proof. Since Agg(c]f)) = —géﬁfl), we have

Au=—u onlV.

For simplicity we let u,, = u(x,). By the definition we have

U — Up
P = —Up,
un-i—l — Un Up—1 — Up o
o m = —u, forn>1,
so that
Uy = (1 — t)UO,

Unpr = (1 +t — "N, — tu,_, forn >1.
Let f,(t) be the polynomials defined by
fo) =1,  fit) =1—14,
for1(®) =+t =" fu(t) = tfui(t) forn > 1.

Then u, = f,(t)up. Since u(z) > 0, we must have f,(¢) > 0 unless uy = 0. On the
other hand Mathematica teaches us that fo(t) < 0if 0.6 <t < 1 and fi2(t) < 0 if
0.4331 <t < 0.7. These imply that ug = 0 if t; < t < 1, and that u,, = 0 for all
n. U

Proposition 7.6. Let t5 ~ 0.445 be a unique solution to t> —t> — 2t +1 = 0 with
0<t<l Ifts<t<1, then limy_ ggz)(a:n) = oo for each n.

Proof. First observe that

tn—i—l
gxo(xn) = Pn = 1—_ta
t"+2 1+t )
Let (1) = —t""2 — 3 + 2t2 + 2t — 1. Then
tn+190n(t)

9 () = Gao (1) = 1—13(1+¢)

and {p,(t)}, increases for each 0 < ¢ < 1. The fact po(t) > 0 for t3 < t < 1
implies ¢, (t) > 0 for each n, and gy, < ¢{2 on V. Lemma 6.6 shows that u(z) =
limy 00 ggg;)( ) exists and 0 < u(z) < co. Proposition 7.5 implies u(z) = co. O
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Remark 7.7. In summary
If then

0<t<0.428 limy e ga =0;
0.428 <t <0.4331 no information;

0.4331 < t < 0.445 limy_,o 3" = 0 provided that it is finite;
0445 <t < 1 limy o0 g = oo,

8. THE CASE OF THE HOMOGENEOUS TREE OF ORDER THREE

In this section let A/ be the homogeneous tree of order three with r(e) = 1 for
all e € E. In this case [2, Example 4.4] shows that (LD) and (CLD) are fulfilled.

Theorem 3.8 and Lemma 3.7 imply g((zk) € D,.
Denote by d(a,b) the geodesic metric between nodes a and b and by C,(a) =
{z € V|d(a,x) = n} the discrete circle around a € V' with radius n € N. We set

Co(a) = {a}.

Lemma 8.1. The harmonic Green function g, is given by
217m

ga(x) = 3 for xz € Cyp(a).
Proof. By the symmetricity of N we may set g,(z) = t,, for z € C,,(a) with m > 0.
The equations Ag,(a) = —1 and Ag,(z) = 0 for = € C,,(a) with m > 1 imply
3(t1 — to) = —1, 2tm+1 + tm—l - 3tm =0 form Z 1.
These lead to

Loy 2 + 21—m
m — Y0 3 3
The condition g, € Dy gives lim,, ;o0 t,, = 0. We have to = 2/3 and ¢, = 217™"/3.

O

Remark 8.2. We see easily ) . gq(z) = 0o, which means cgp = oo.

Proposition 8.3. The 2-harmonic Green function g,(f) s given by

g9 (a) = 10/9,
217m
9 () = BTmm for xz € Cyp(a) with m > 1.

Proof. We denote by |A| the cardinality of a set A. We have |C,(a)| = 3-2m!

and
2, 2l-m 10
92(0) =3 gu(w) —t2+Z!C @t =5+2 5 "
)

zeV m=1

Fix a € V and put u(C,(z)) = ZyECn(x) 9a(y). Let x € Cp,(a
claim
21-m /3 if n = 0

u(Cp(x)) = ¢ 2™ if 1 <n<m;
1 if n>m.
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Indeed, first we see that u(Cy(z)) = go(z) = t,,, = 217™/3. For 1 < n < m we have

n—1
,U(Cn<x>> =tm-n T Z 2j71tmfn+2j + 2ntm+n = 2"
j=1
For n > m we have
m—1
Cr (@) = 2" ™yt D XTI 2 =
j=1

The symmetricity of the network implies g,(y) = t,, for y € C,,(x). We have

1@ =3 Y 6ely) =3 tanlCal@))

n=0 yeC,(z)

9 91-m m—1 ol-n . 0 ol-n
=33 T2 g2 +; 3

n=1

~ 217™(3m +5)
D —
O
Remark 8.4. Tt is easy to see that g((f) (x) is decreasing with respect to m. Especially
g5 (a) > g7 ().
Proposition 8.5. u(z) = limy_, g (x) ezists for each v € V and 0 < u(x) < oo.
Proof. We see that g,(a) =2/3 < 10/9 = géQ)(a) and that

2Im MBm45)

for x € Cy,(a) with m > 1. Lemma 6.6 shows the assertion. O
Recall that
SIS @)E
)\(N):mf{—]fEL V)¢
I1f () 117 ’

Proposition 8.6. \(N) =3 — 2v/2.
Proof. Let \* =3 — 2v/2. We consider the recurrence equations
3(t] — ) = =Nt 20 1+t —3t, ==Xt form >1,
which have a solution
tr = (1+m/3)2~™% for m > 0.

Define u* as the function u*(x) = ¢}, for x € Cp,(a). Then u* is positive and
satisfies Au* = —A*u*. Lemma 6.4 shows \* < A(N).
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On the other hand we consider a sequence {u(™},, defined by u(™(z) = 27™/2 if
0 <m <nand u™(z) =0if m >n for z € Cy,(a). Then u™ € Ly(V) and

u 3n
n)12 _ Com—1lio—m/2\2 _ o
[ \|l2_1+mZ:132 @™ =1+,

n—1
“u(n)H]QD _ Z 3. 2m(2—m/2 _ 2—(m+1)/2)2 +3- 2n(2—n/2 _ 0)2
m=0

=3n(1—2712)2 4+ 3.

We have
n) (2
AWN) < % = (3n(1—-2"Y%)2 4 3). 3n2+ 5
—2(1 =272 = )
as n — 0o. Therefore A(N) = \*. O
Proposition 8.7. lim;_, g((lk) (x) = 0.
Proof. Propositions 8.3 and 6.3 show the assertion. 0]

Remark 8.8. The proposition above can be obtained by Propositions 8.5 and 8.6
and Theorem 6.5.
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