総合理工学部
島根大学総合理工学部
島根大学総合理工学研究科
島根大学総合理工学部紀要.シリーズB

アクセス数 : 1138
ダウンロード数 : 89
島根大学総合理工学研究科紀要. シリーズB Volume 49
published_at 2016-03

Further bounds for Cebysev functional for power series in banach algebras via Grüss-Lupas type inequalities for p-norms

Silvestru Sever Dragomir
Marius Valentin Boldea
Mihail Megan
full_text_file
c0020049002.pdf ( 133 KB )
Descriptions
Some Grüss-Lupas type inequalities for p-norms of sequences in Banach algebras are obtained. Moreover, if f(λ)=Σ^^∞__<n=0>α_nλ^n is a function defined by power series with complex coefficients and convergent on the open disk D(0,R)⊂C, R > 0 and x,y ∈ B, a Banach algebra, with xy = yx, then we also establish some new upper bounds for the norm of the Cebysev type difference
f(λ)f(λxy) - f(λx)f(λy), λ ∈ D(0,R).
These results build upon the earlier results obtained by the authors. Applications for some fundamental functions such as the exponential function and the resolvent function are provided as well.