Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics **49** (2016), pp. 15–34

FURTHER BOUNDS FOR ČEBYŠEV FUNCTIONAL FOR POWER SERIES IN BANACH ALGEBRAS VIA GRÜSS-LUPAS TYPE INEQUALITIES FOR p-NORMS

SILVESTRU SEVER DRAGOMIR, MARIUS VALENTIN BOLDEA, AND MIHAIL MEGAN

Communicated by Takeshi Wada

(Received: August 25, 2015)

Abstract. Some Grüss-Lupaş type inequalities for p-norms of sequences in Banach algebras are obtained. Moreover, if $f(\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n$ is a function defined by power series with complex coefficients and convergent on the open disk $D(0,R) \subset \mathbb{C}, R > 0$ and $x,y \in \mathcal{B}$, a Banach algebra, with xy = yx, then we also establish some new upper bounds for the norm of the Čebyšev type difference

$$f(\lambda) f(\lambda xy) - f(\lambda x) f(\lambda y), \lambda \in D(0, R).$$

These results build upon the earlier results obtained by the authors. Applications for some fundamental functions such as the exponential function and the resolvent function are provided as well.

1. Introduction

In 1935, G. Grüss [11] proved the following integral inequality which gives an approximation of the integral mean of the product in terms of the product of the integral means integrals as follows:

(1)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) g(x) dx - \frac{1}{b-a} \int_{a}^{b} f(x) dx \cdot \frac{1}{b-a} \int_{a}^{b} g(x) dx \right|$$

$$\leq \frac{1}{4} (\Phi - \varphi) (\Gamma - \gamma)$$

where $f, g: [a, b] \to \mathbb{R}$ are integrable on [a, b] and satisfying the assumption

$$\varphi \le f(x) \le \Phi, \gamma \le g(x) \le \Gamma$$

for each $x \in [a,b]$ where $\varphi, \Phi, \gamma, \Gamma$ are given real constants. Moreover the constant $\frac{1}{4}$ is sharp in the sense that it can not be replaced by a smaller one.

²⁰⁰⁰ Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Banach algebras, Power series, Exponential function, Resolvent function, Norm inequalities.

For a simple proof of (1) as well as for some other integral inequalities of Grüss' type see the Chapter X of the recent book [12] by Mitrinović, Pečarić and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski [1] established the following discrete version of Grüss' inequality, see also [12, Ch. X]:

Theorem 1.1. Let $a = (a_1, ..., a_n)$, $b = (b_1, ..., b_n)$ be two n-tuples of real numbers such that $r \le a_i \le R$ and $s \le b_i \le S$ for i = 1, ..., n. Then one has the inequality:

(2)
$$\left| \frac{1}{n} \sum_{i=1}^{n} a_i b_i - \frac{1}{n} \sum_{i=1}^{n} a_i \cdot \frac{1}{n} \sum_{i=1}^{n} b_i \right|$$

$$\leq \frac{1}{n} \left[\frac{n}{2} \right] \left(1 - \frac{1}{n} \left[\frac{n}{2} \right] \right) (R - r) (S - s)$$

when [x] is the integer part of $x, x \in \mathbb{R}$.

In 1981, A. Lupaş [12, Ch. X] proved some similar results for the first difference of a as follows:

Theorem 1.2. Let a, b two monotonic n-tuples in the same sense and p a positive n-tuple. Then

$$(3) \qquad \min_{1 \leq i \leq n-1} |a_{i+1} - a_i| \min_{1 \leq i \leq n-1} |b_{i+1} - b_i| \left[\frac{1}{P_n} \sum_{i=1}^n i^2 p_i - \left(\frac{1}{P_n} \sum_{i=1}^n i p_i \right)^2 \right]$$

$$\leq \frac{1}{P_n} \sum_{i=1}^n p_i a_i b_i - \frac{1}{P_n} \sum_{i=1}^n p_i a_i \cdot \frac{1}{P_n} \sum_{i=1}^n p_i b_i$$

$$\leq \max_{1 \leq i \leq n-1} |a_{i+1} - a_i| \max_{1 \leq i \leq n-1} |b_{i+1} - b_i| \left[\frac{1}{P_n} \sum_{i=1}^n i^2 p_i - \left(\frac{1}{P_n} \sum_{i=1}^n i p_i \right)^2 \right].$$

If there exists the numbers $\bar{a}, \bar{a}_1, r, r_1, (rr_1 > 0)$ such that $a_k = \bar{a} + kr$ and $b_k = \bar{a}_1 + kr_1$, then in (3) the equality holds.

For some generalizations of Gruss' inequality for isotonic linear functionals defined on certain spaces of mappings see Chapter X of the book [12] where further references are given .

In order to extend the above results for Banach algebras, we need some preliminary facts as follows:

Let \mathcal{B} be an algebra. An algebra norm on \mathcal{B} is a map $\|\cdot\| : \mathcal{B} \to [0, \infty)$ such that $(\mathcal{B}, \|\cdot\|)$ is a normed space, and, further:

$$||ab|| \le ||a|| \, ||b||$$

for any $a, b \in \mathcal{B}$. The normed algebra $(\mathcal{B}, \|\cdot\|)$ is a Banach algebra if $\|\cdot\|$ is a complete norm

We assume that the Banach algebra is *unital*, this means that \mathcal{B} has an identity 1 and that ||1|| = 1.

Let \mathcal{B} be a unital algebra. An element $a \in \mathcal{B}$ is *invertible* if there exists an element $b \in \mathcal{B}$ with ab = ba = 1. The element b is unique; it is called the *inverse*

of a and written a^{-1} or $\frac{1}{a}$. The set of invertible elements of \mathcal{B} is denoted by $\text{Inv}\mathcal{B}$. If $a, b \in \text{Inv}\mathcal{B}$ then $ab \in \text{Inv}\mathcal{B}$ and $(ab)^{-1} = b^{-1}a^{-1}$.

For a unital Banach algebra we also have:

- (i) If $a \in \mathcal{B}$ and $\lim_{n \to \infty} ||a^n||^{1/n} < 1$, then $1 a \in \text{Inv}\mathcal{B}$;
- (ii) $\{a \in \mathcal{B}: \|1 a\| < 1\} \subset \text{Inv}\mathcal{B};$
- (iii) Inv \mathcal{B} is an open subset of \mathcal{B} ;
- (iv) The map $\operatorname{Inv}\mathcal{B}\ni a\longmapsto a^{-1}\in\operatorname{Inv}\mathcal{B}$ is continuous.

For simplicity, we denote $\lambda 1$, where $\lambda \in \mathbb{C}$ and 1 is the identity of \mathcal{B} , by λ . The resolvent set of $a \in \mathcal{B}$ is defined by

$$\rho(a) := \{ \lambda \in \mathbb{C} : \lambda - a \in \text{Inv}\mathcal{B} \};$$

the spectrum of a is $\sigma(a)$, the complement of $\rho(a)$ in \mathbb{C} , and the resolvent function of a is $R_a: \rho(a) \to \text{Inv}\mathcal{B}$, $R_a(\lambda) := (\lambda - a)^{-1}$. For each $\lambda, \gamma \in \rho(a)$ we have the identity

$$R_a(\gamma) - R_a(\lambda) = (\lambda - \gamma) R_a(\lambda) R_a(\gamma).$$

Let f be an analytic functions on the open disk D(0,R) given by the power series $f(\lambda) := \sum_{j=0}^{\infty} \alpha_j \lambda^j$ ($|\lambda| < R$). If $\nu(a) < R$, then the series $\sum_{j=0}^{\infty} \alpha_j a^j$ converges in the Banach algebra \mathcal{B} because $\sum_{j=0}^{\infty} |\alpha_j| ||a^j|| < \infty$, and we can define f(a) to be its sum. Clearly f(a) is well defined and there are many examples of important functions on a Banach algebra \mathcal{B} that can be constructed in this way. For instance, the exponential map on \mathcal{B} denoted exp and defined as

$$\exp a := \sum_{j=0}^{\infty} \frac{1}{j!} a^j$$
 for each $a \in \mathcal{B}$.

It is known that if x and y are commuting, i.e. xy = yx, then the exponential function satisfies the property

$$\exp(x)\exp(y) = \exp(y)\exp(x) = \exp(x+y).$$

Also, if x is invertible and $a, b \in \mathbb{R}$ with a < b then

$$\int_{a}^{b} \exp(tx) dt = x^{-1} \left[\exp(bx) - \exp(ax) \right].$$

Moreover, if x and y are commuting and y-x is invertible, then

$$\int_0^1 \exp((1-s)x + sy) \, ds = (y-x)^{-1} \left[\exp(y) - \exp(x) \right].$$

Inequalities for functions of operators in Hilbert spaces may be found in the recent monographs [5], [6], [10] and the references therein.

Let α_n be nonzero complex numbers and let

$$R:=\frac{1}{\limsup |\alpha_n|^{\frac{1}{n}}}.$$

Clearly $0 \le R \le \infty$, but we consider only the case $0 < R \le \infty$. Denote by:

$$D(0,R) = \left\{ \begin{array}{ll} \{\lambda \in \mathbb{C} : |\lambda| < R\}, & \text{if } R < \infty \\ \mathbb{C}, & \text{if } R = \infty, \end{array} \right.$$

consider the functions:

$$\lambda \mapsto f(\lambda) : D(0,R) \to \mathbb{C}, f(\lambda) := \sum_{n=0}^{\infty} \alpha_n \lambda^n$$

and

$$\lambda \mapsto f_A(\lambda) : D(0,R) \to \mathbb{C}, f_A(\lambda) := \sum_{n=0}^{\infty} |\alpha_n| \, \lambda^n.$$

Let $\mathcal B$ be a unital Banach algebra and 1 its unity. Denote by

$$B(0,R) = \begin{cases} \{x \in \mathcal{B} : ||x|| < R\}, & \text{if } R < \infty \\ \mathcal{B}, & \text{if } R = \infty. \end{cases}$$

We associate to f the map:

$$x \mapsto \widetilde{f}(x) : B(0,R) \to \mathcal{B}, \widetilde{f}(x) := \sum_{n=0}^{\infty} \alpha_n x^n.$$

Obviously, \widetilde{f} is correctly defined because the series $\sum_{n=0}^{\infty} \alpha_n x^n$ is absolutely convergent, since $\sum_{n=0}^{\infty} \|\alpha_n x^n\| \leq \sum_{n=0}^{\infty} |\alpha_n| \|x\|^n$. In addition, we assume that $s_2 := \sum_{n=0}^{\infty} n^2 |\alpha_n| < \infty$. Let $s_0 := \sum_{n=0}^{\infty} |\alpha_n| < \infty$ and $s_1 := \sum_{n=0}^{\infty} n |\alpha_n| < \infty$. With the above assumptions we have that [7]:

Theorem 1.3. Let $\lambda \in \mathbb{C}$ such that $\max\{|\lambda|, |\lambda|^2\} < R < \infty$ and let $x, y \in \mathcal{B}$ with $||x||, ||y|| \le 1$ and xy = yx. Then:

(i) We have

(4)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x y) - \widetilde{f}(\lambda x) \, \widetilde{f}(\lambda y) \right\|$$

$$\leq \sqrt{2} \psi \min \left\{ \|x - 1\|, \|y - 1\| \right\} f_A(|\lambda|^2)$$

where:

$$\psi^2 := s_0 s_2 - s_1^2.$$

(ii) We also have

(6)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x y) - \widetilde{f}(\lambda x) \, \widetilde{f}(\lambda y) \right\| \leq \sqrt{2} \min \left\{ \left\| x - 1 \right\|, \left\| y - 1 \right\| \right\} f_A(|\lambda|) \\ \times \left\{ f_A(|\lambda|) \left[\left| \lambda \right| f_A'(|\lambda|) + \left| \lambda \right|^2 f_A''(|\lambda|) \right] - \left[\left| \lambda \right| f_A'(|\lambda|) \right]^2 \right\}^{1/2}.$$

For other similar results, see [7], [8] and [9]

Motivated by the above results we establish in this paper other similar inequalities for the norm of the Cebyšev difference

$$\widetilde{f}(\lambda \cdot 1) \widetilde{f}(\lambda xy) - \widetilde{f}(\lambda x) \widetilde{f}(\lambda y)$$

via some Grüss'-Lupaş type inequality for p-norms with $p \geq 1$, where λ is a complex number and the vectors x, y belong to the Banach algebra \mathcal{B} . Applications for some fundamental functions such as the *exponential function* and the *resolvent function* are provided as well.

2. A Discrete Inequality of Grüss Type for 1-Norm

The following inequality of Grüss type holds.

Theorem 2.1. Let \mathcal{B} be a Banach algebra over \mathbb{K} (= \mathbb{R} , \mathbb{C}), $a_i, b_i \in \mathcal{B}$ and $\alpha_i \in \mathbb{K}$ (i = 1, ..., n). Then we have the inequality:

(7)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \frac{1}{2} \left[\left(\sum_{i=1}^{n} |\alpha_{i}| \right)^{2} - \sum_{i=1}^{n} |\alpha_{i}|^{2} \right] \sum_{i=1}^{n-1} \left\| \Delta a_{i} \right\| \sum_{i=1}^{n-1} \left\| \Delta b_{i} \right\|,$$

where $\Delta a_i := a_{i+1} - a_i$ (i = 1, ..., n - 1) and $\Delta b_i := b_{i+1} - b_i$ (i = 1, ..., n - 1) are the usual forward differences.

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Let us start with the following identity in Banach algebras which can be proved by direct computation

$$\sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} = \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} (a_{j} - a_{i}) (b_{j} - b_{i})$$

$$= \sum_{1 \leq i < j \leq n} \alpha_{i} \alpha_{j} (a_{j} - a_{i}) (b_{j} - b_{i}).$$

As i < j, we can write

$$a_j - a_i = \sum_{k=i}^{j-1} (a_{k+1} - a_k) = \sum_{k=i}^{j-1} \Delta a_k$$
 and $b_j - b_i = \sum_{l=i}^{j-1} (b_{l+1} - b_l) = \sum_{l=i}^{j-1} \Delta b_l$.

Using the generalized triangle inequality, we have successively:

(8)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\| = \left\| \sum_{1 \leq i < j \leq n} \alpha_{i} \alpha_{j} \sum_{k=i}^{j-1} \Delta a_{k} \sum_{l=i}^{j-1} \Delta b_{l} \right\|$$

$$\leq \sum_{1 \leq i < j \leq n} |\alpha_{i}| |\alpha_{j}| \left\| \sum_{k=i}^{j-1} \Delta a_{k} \right\| \left\| \sum_{l=i}^{j-1} \Delta b_{l} \right\|$$

$$\leq \sum_{1 \leq i < j \leq n} |\alpha_{i}| |\alpha_{j}| \sum_{k=i}^{j-1} \|\Delta a_{k}\| \sum_{l=i}^{j-1} \|\Delta b_{l}\| =: A.$$

It is obvious for all $1 \le i < j \le n-1$, we have that

$$\sum_{k=i}^{j-1} \|\Delta a_k\| \le \sum_{k=1}^{n-1} \|\Delta a_k\|$$

and

$$\sum_{l=i}^{j-1} \|\Delta b_l\| \le \sum_{l=1}^{n-1} \|\Delta b_l\|$$

and then

(9)
$$A \leq \sum_{k=1}^{n-1} \|\Delta a_k\| \sum_{l=1}^{n-1} \|\Delta b_l\| \sum_{1 \leq i < j \leq n} |\alpha_i| |\alpha_j|.$$

Now, let us observe that

(10)
$$\sum_{1 \le i < j \le n} |\alpha_i| |\alpha_j| = \frac{1}{2} \left[\sum_{i,j=1}^n |\alpha_i| |\alpha_j| - \sum_{i=j} |\alpha_i| |\alpha_j| \right]$$
$$= \frac{1}{2} \left[\sum_{i=1}^n |\alpha_i| \sum_{j=1}^n |\alpha_j| - \sum_{i=1}^n |\alpha_i|^2 \right]$$
$$= \frac{1}{2} \left[\left(\sum_{i=1}^n |\alpha_i| \right)^2 - \sum_{i=1}^n |\alpha_i|^2 \right].$$

Using (8)-(10), we deduce the desired inequality (7).

To prove the sharpness of the constant $\frac{1}{2}$, let us assume that (7) holds with a constant c > 0. That is,

(11)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq c \left[\left(\sum_{i=1}^{n} |\alpha_{i}| \right)^{2} - \sum_{i=1}^{n} |\alpha_{i}|^{2} \right] \sum_{i=1}^{n-1} \|\Delta a_{i}\| \sum_{i=1}^{n-1} \|\Delta b_{i}\|$$

for all a_i, b_i, α_i (i = 1, ..., n) as above and $n \ge 2$. Choose in (7) n = 2 and compute

$$\sum_{i=1}^{2} \alpha_{i} \sum_{i=1}^{2} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{2} \alpha_{i} a_{i} \sum_{i=1}^{2} \alpha_{i} b_{i} = \frac{1}{2} \sum_{i,j=1}^{2} \alpha_{i} \alpha_{j} (a_{i} - a_{j}) (b_{i} - b_{j})$$

$$= \sum_{1 \leq i < j \leq 2} \alpha_{i} \alpha_{j} (a_{i} - a_{j}) (b_{i} - b_{j})$$

$$= \alpha_{1} \alpha_{2} (a_{1} - a_{2}) (b_{1} - b_{2}).$$

Also,

$$\sum_{1 \le i \le j \le 2} |\alpha_i| |\alpha_j| \sum_{i=1}^1 \|\Delta a_i\| \sum_{i=1}^1 \|\Delta b_i\| = |\alpha_1| |\alpha_2| \|a_1 - a_2\| \|b_1 - b_2\|.$$

Substituting in (11), we obtain

$$|\alpha_1| |\alpha_2| ||a_1 - a_2|| ||b_1 - b_2|| \le 2c |\alpha_1| |\alpha_2| ||a_1 - a_2|| ||b_1 - b_2||.$$

If we assume that $\alpha_1, \alpha_2 > 0$, $a_1 \neq a_2$, $b_1 \neq b_2$, then we obtain $c \geq \frac{1}{2}$, which proves the sharpness of the constant $\frac{1}{2}$.

Remark 2.2. Let \mathcal{B} be a Banach algebra over \mathbb{K} (= \mathbb{R} , \mathbb{C}), $a_i \in \mathcal{B}$ and $\alpha_i \in \mathbb{K}$ (i = 1, ..., n). Then we have the inequality:

(12)
$$\left\| \sum_{i=1}^{n} \alpha_i \sum_{i=1}^{n} \alpha_i a_i^2 - \left(\sum_{i=1}^{n} \alpha_i a_i \right)^2 \right\|$$

$$\leq \frac{1}{2} \left[\left(\sum_{i=1}^{n} |\alpha_i| \right)^2 - \sum_{i=1}^{n} |\alpha_i|^2 \right] \left(\sum_{i=1}^{n-1} \|\Delta a_i\| \right)^2.$$

The constant $\frac{1}{2}$ is best possible.

The following corollary holds.

Corollary 2.3. Under the above assumptions for a_i, b_i (i = 1, ..., n), we have the inequality

(13)
$$\left\| \frac{1}{n} \sum_{i=1}^{n} a_i b_i - \frac{1}{n} \sum_{i=1}^{n} a_i \cdot \frac{1}{n} \sum_{i=1}^{n} b_i \right\| \leq \frac{1}{2} \left(1 - \frac{1}{n} \right) \sum_{i=1}^{n-1} \left\| \Delta a_i \right\| \sum_{i=1}^{n-1} \left\| \Delta b_i \right\|,$$

and the constant $\frac{1}{2}$ is sharp.

In particular, we have

$$\left\| \frac{1}{n} \sum_{i=1}^{n} a_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} a_i \right)^2 \right\| \le \frac{1}{2} \left(1 - \frac{1}{n} \right) \left(\sum_{i=1}^{n-1} \|\Delta a_i\| \right)^2.$$

3. An Inequality of Grüss Type for p-Norm

The following result that provides a version for the p-norm, p > 1 of the forward difference also holds.

Theorem 3.1. Let \mathcal{B} be a Banach algebra over \mathbb{K} ($=\mathbb{R},\mathbb{C}$), $a_i,b_i\in\mathcal{B}$ and $\alpha_i\in\mathbb{K}$ (i = 1, ..., n). Then we have the inequality:

(14)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \sum_{1 \leq j < i \leq n} (i - j) |\alpha_{i}| |\alpha_{j}| \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{q} \right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. The constant C = 1 in the right hand side of (7) is sharp in the sense that it cannot be replaced by a smaller one.

Proof. From the proof of Theorem 2.1 we have

(15)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \sum_{1 \leq j < i \leq n} |\alpha_{i}| |\alpha_{j}| \sum_{k=j}^{i-1} \|\Delta a_{k}\| \sum_{l=j}^{i-1} \|\Delta b_{l}\| =: A.$$

Using Hölder's discrete inequality, we can state that

$$\sum_{k=j}^{i-1} \|\Delta a_k\| \le (i-j)^{\frac{1}{q}} \left(\sum_{k=j}^{i-1} \|\Delta a_k\|^p \right)^{\frac{1}{p}}$$

and

$$\sum_{k=j}^{i-1} \|\Delta b_k\| \le (i-j)^{\frac{1}{p}} \left(\sum_{k=j}^{i-1} \|\Delta b_k\|^q \right)^{\frac{1}{q}}$$

where p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, and then, by multiplication, we have

(16)
$$A \leq \sum_{1 \leq j < i \leq n} |\alpha_i| |\alpha_j| (i-j) \left(\sum_{k=j}^{i-1} \|\Delta a_k\|^p \right)^{\frac{1}{p}} \left(\sum_{k=j}^{i-1} \|\Delta b_k\|^q \right)^{\frac{1}{q}}.$$

As

$$\sum_{k=j}^{i-1} \|\Delta a_k\|^p \le \sum_{k=1}^{n-1} \|\Delta a_k\|^p$$

and

$$\sum_{k=j}^{i-1} \|\Delta b_k\|^q \le \sum_{k=1}^{n-1} \|\Delta b_k\|^q,$$

for all $1 \le j < i \le n$, then by (15) and (16), we get the desired inequality (14).

To prove the sharpness of the constant, let us assume that (14) holds with a constant C > 0. That is,

(17)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq C \sum_{1 \leq j < i \leq n} (i - j) |\alpha_{i}| |\alpha_{j}| \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{q} \right)^{\frac{1}{q}}.$$

Choose n=2. Then

$$\left\| \sum_{i=1}^{2} \alpha_{i} \sum_{i=1}^{2} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{2} \alpha_{i} a_{i} \sum_{i=1}^{2} \alpha_{i} b_{i} \right\| = |\alpha_{1}| |\alpha_{2}| \|a_{1} - a_{2}\| \|b_{1} - b_{2}\|$$

and

$$\sum_{1 \le j < i \le 2} (i - j) |\alpha_i| |\alpha_j| \left(\sum_{k=1}^1 \|\Delta a_k\|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^1 \|\Delta b_k\|^q \right)^{\frac{1}{q}}$$

$$= |\alpha_1| |\alpha_2| \|a_1 - a_2\| \|b_1 - b_2\|.$$

Therefore, from (17), we obtain

$$\|\alpha_1\|\alpha_2\|a_1 - a_2\|\|b_1 - b_2\| \le C\|\alpha_1\|\alpha_2\|a_1 - a_2\|\|b_1 - b_2\|$$

for all $a_1 \neq a_2$, $b_1 \neq b_2$, and then $C \geq 1$, which proves the sharpness of the constant.

Remark 3.2. A coarser upper bound, which can be more useful may be obtained by applying Cauchy-Schwartz's inequality:

$$\sum_{1 \le j < i \le n} (i - j) |\alpha_i| |\alpha_j| \le \left(\sum_{1 \le j < i \le n} |\alpha_i| |\alpha_j|\right)^{\frac{1}{2}} \left(\sum_{1 \le j < i \le n} |\alpha_i| |\alpha_j| (i - j)^2\right)^{\frac{1}{2}}$$

and taking into account that

$$\sum_{1 \le j < i \le n} |\alpha_i| |\alpha_j| = \frac{1}{2} \left[\left(\sum_{i=1}^n |\alpha_i| \right)^2 - \sum_{i=1}^n |\alpha_i|^2 \right]$$

and

$$\sum_{1 \le j < i \le n} |\alpha_i| |\alpha_j| (i - j)^2 = \frac{1}{2} \sum_{i,j=1}^n |\alpha_i| |\alpha_j| (i - j)^2$$

$$= \left[\sum_{i=1}^n |\alpha_i| \sum_{i=1}^n i^2 |\alpha_i| - \left(\sum_{i=1}^n i |\alpha_i| \right)^2 \right].$$

Thus, from (14), we can state the inequality

(18)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \left[\left(\sum_{i=1}^{n} |\alpha_{i}| \right)^{2} - \sum_{i=1}^{n} |\alpha_{i}|^{2} \right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} |\alpha_{i}| \sum_{i=1}^{n} i^{2} |\alpha_{i}| - \left(\sum_{i=1}^{n} i |\alpha_{i}| \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{q} \right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

The following corollary holds.

Corollary 3.3. With the above assumptions, we have

(19)
$$\left\| \frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i} - \frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i} \right\|$$

$$\leq \frac{n^{2} - 1}{6n} \left(\sum_{k=1}^{n-1} \left\| \Delta a_{k} \right\|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n-1} \left\| \Delta b_{k} \right\|^{q} \right)^{\frac{1}{q}}$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. The constant $\frac{1}{6}$ is the best possible.

Proof. The proof follows by (7), putting $\alpha_i = \frac{1}{n}$ and taking into account that

$$\begin{split} &\sum_{1 \leq j < i \leq n} (i - j) \\ &= \sum_{1 \leq j \leq 2} (2 - j) + \sum_{1 \leq j \leq 3} (3 - j) + \dots + \sum_{1 \leq j \leq n} (n - j) \\ &= 2 \cdot 2 - (1 + 2) + 3 \cdot 3 - (1 + 2 + 3) + \dots + n \cdot n - (1 + 2 + \dots + n) \\ &= 1^2 + 2^2 + \dots + n^2 - 1 - (1 + 2) - (1 + 2 + 3) - \dots - (1 + 2 + \dots + n) \\ &= \sum_{k=1}^n k^2 - \sum_{k=1}^n \frac{k (k+1)}{2} = \frac{1}{2} \left(\sum_{k=1}^n k^2 - \sum_{k=1}^n k \right) = \frac{n (n^2 - 1)}{6}, \end{split}$$

and the corollary is thus proved.

Remark 3.4. If in (14) and (19) we assume that p = q = 2, then we get the inequalities:

(20)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \sum_{1 \leq j < i \leq n} (i - j) |\alpha_{i}| |\alpha_{j}| \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{2} \right)^{\frac{1}{2}}$$

and

(21)
$$\left\| \frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i} - \frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i} \right\|$$

$$\leq \frac{n^{2} - 1}{6n} \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{2} \right)^{\frac{1}{2}},$$

respectively.

We also have the inequality

(22)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} - \sum_{i=1}^{n} \alpha_{i} a_{i} \sum_{i=1}^{n} \alpha_{i} b_{i} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \left[\left(\sum_{i=1}^{n} |\alpha_{i}| \right)^{2} - \sum_{i=1}^{n} |\alpha_{i}|^{2} \right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} |\alpha_{i}| \sum_{i=1}^{n} i^{2} |\alpha_{i}| - \left(\sum_{i=1}^{n} i |\alpha_{i}| \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n-1} \|\Delta b_{k}\|^{2} \right)^{\frac{1}{2}}.$$

In the case when $b_i = a_i$, $i \in \{1, ..., n\}$ we get from (20)

(23)
$$\left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i}^{2} - \left(\sum_{i=1}^{n} \alpha_{i} a_{i} \right)^{2} \right\| \leq \sum_{1 \leq j < i \leq n} (i-j) \left| \alpha_{i} \right| \left| \alpha_{j} \right| \left(\sum_{k=1}^{n-1} \left\| \Delta a_{k} \right\|^{2} \right)$$

and from (22)

$$(24) \qquad \left\| \sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} \alpha_{i} a_{i}^{2} - \left(\sum_{i=1}^{n} \alpha_{i} a_{i} \right)^{2} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \left[\left(\sum_{i=1}^{n} |\alpha_{i}| \right)^{2} - \sum_{i=1}^{n} |\alpha_{i}|^{2} \right]^{\frac{1}{2}} \left[\sum_{i=1}^{n} |\alpha_{i}| \sum_{i=1}^{n} i^{2} |\alpha_{i}| - \left(\sum_{i=1}^{n} i |\alpha_{i}| \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left(\sum_{k=1}^{n-1} \|\Delta a_{k}\|^{2} \right).$$

4. Inequalities for Power Series

As some natural examples that are useful for applications, we can point out that, if

(25)
$$f(\lambda) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \lambda^n = \ln \frac{1}{1+\lambda}, \ \lambda \in D(0,1);$$
$$g(\lambda) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \lambda^{2n} = \cos \lambda, \ \lambda \in \mathbb{C};$$
$$h(\lambda) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \lambda^{2n+1} = \sin \lambda, \ \lambda \in \mathbb{C};$$
$$l(\lambda) = \sum_{n=0}^{\infty} (-1)^n \lambda^n = \frac{1}{1+\lambda}, \ \lambda \in D(0,1);$$

then the corresponding functions constructed by the use of the absolute values of the coefficients are

(26)
$$f_A(\lambda) = \sum_{n=1}^{\infty} \frac{1}{n} \lambda^n = \ln \frac{1}{1-\lambda}, \ \lambda \in D(0,1);$$

$$g_A(\lambda) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \lambda^{2n} = \cosh \lambda, \ \lambda \in \mathbb{C};$$

$$h_A(\lambda) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \lambda^{2n+1} = \sinh \lambda, \ \lambda \in \mathbb{C};$$

$$l_A(\lambda) = \sum_{n=0}^{\infty} \lambda^n = \frac{1}{1-\lambda}, \ \lambda \in D(0,1).$$

Other important examples of functions as power series representations with non-negative coefficients are:

(27)
$$\exp(\lambda) = \sum_{n=0}^{\infty} \frac{1}{n!} \lambda^{n} \qquad \lambda \in \mathbb{C},$$

$$\frac{1}{2} \ln\left(\frac{1+\lambda}{1-\lambda}\right) = \sum_{n=1}^{\infty} \frac{1}{2n-1} \lambda^{2n-1}, \qquad \lambda \in D(0,1);$$

$$\sin^{-1}(\lambda) = \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi} (2n+1) n!} \lambda^{2n+1}, \qquad \lambda \in D(0,1);$$

$$\tanh^{-1}(\lambda) = \sum_{n=1}^{\infty} \frac{1}{2n-1} \lambda^{2n-1}, \qquad \lambda \in D(0,1)$$

$${}_{2}F_{1}(\alpha,\beta,\gamma,\lambda) = \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\alpha\right) \Gamma\left(n+\beta\right) \Gamma\left(\gamma\right)}{n! \Gamma\left(\alpha\right) \Gamma\left(\beta\right) \Gamma\left(n+\gamma\right)} \lambda^{n}, \alpha,\beta,\gamma > 0,$$

$$\lambda \in D(0,1);$$

where Γ is Gamma function.

The following new result holds:

Theorem 4.1. Let $f(\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n$ be a power series that is convergent on the open disk D(0,R), with R > 0. If $x,y \in \mathcal{B}$ with xy = yx and ||x||, ||y|| < 1, then we have for $\lambda \in \mathbb{C}$ with $|\lambda| < R$ the inequality:

(28)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x y) - \widetilde{f}(\lambda x) \, \widetilde{f}(\lambda y) \right\|$$

$$\leq \frac{1}{2} \frac{\|x - 1\| \|y - 1\|}{(1 - \|x\|) (1 - \|y\|)} \left[f_A^2(|\lambda|) - f_{A^2}(|\lambda|^2) \right],$$

where

(29)
$$f_{A^2}(\lambda) := \sum_{n=0}^{\infty} |\alpha_n|^2 \lambda^n$$

has the radius of convergence R^2 .

Proof. From the inequality (7) we have

$$(30) \qquad \left\| \sum_{i=0}^{n} \alpha_{i} \lambda^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} (xy)^{i} - \sum_{i=0}^{n} \alpha_{i} \lambda^{i} x^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} y^{i} \right\|$$

$$\leq \frac{1}{2} \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right] \sum_{j=0}^{n-1} \left\| x^{j+1} - x^{j} \right\| \sum_{j=0}^{n-1} \left\| y^{j+1} - y^{j} \right\|,$$

$$= \frac{1}{2} \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right] \sum_{j=0}^{n-1} \left\| x^{j} (x-1) \right\| \sum_{j=0}^{n-1} \left\| y^{j} (y-1) \right\|,$$

$$\leq \frac{1}{2} \|x - 1\| \|y - 1\| \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right] \sum_{j=0}^{n-1} \|x\|^{j} \sum_{j=0}^{n-1} \|y\|^{j}$$

$$= \frac{1}{2} \|x - 1\| \|y - 1\| \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right]$$

$$\times \frac{1 - \|x\|^{n}}{1 - \|x\|} \frac{1 - \|y\|^{n}}{1 - \|y\|}$$

for any $n \geq 1$.

Since all the series whose partial sums are involved in (30) are convergent, then by letting $n \to \infty$ in (30) we deduce the desired inequality (28).

Corollary 4.2. Let $f(\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n$ be a power series that is convergent on the open disk D(0,R), with R > 0. If $x \in \mathcal{B}$ and ||x|| < 1, then we have for $\lambda \in \mathbb{C}$ with $|\lambda| < R$ the inequality:

(31)
$$\left\| \widetilde{f}(\lambda \cdot 1) \widetilde{f}(\lambda x^2) - \left[\widetilde{f}(\lambda x) \right]^2 \right\| \leq \frac{1}{2} \frac{\left\| x - 1 \right\|^2}{\left(1 - \left\| x \right\| \right)^2} \left[f_A^2(|\lambda|) - f_{A^2}(|\lambda|^2) \right].$$

We have the following result as well:

Theorem 4.3. Let $f(\lambda) = \sum_{n=0}^{\infty} \alpha_n \lambda^n$ be a power series that is convergent on the open disk D(0,R), with R > 0. If $x, y \in \mathcal{B}$ with xy = yx and ||x||, ||y|| < 1, then we have for $\lambda \in \mathbb{C}$ with $|\lambda| < R$ the inequality:

(32)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x y) - \widetilde{f}(\lambda x) \, \widetilde{f}(\lambda y) \right\|$$

$$\leq \frac{\sqrt{2}}{2} \frac{\|x - 1\| \|y - 1\|}{(1 - \|x\|^p)^{\frac{1}{p}} (1 - \|y\|^q)^{\frac{1}{q}}} \left[f_A^2(|\lambda|) - f_{A^2}(|\lambda|^2) \right]^{1/2}$$

$$\times \left\{ f_A(|\lambda|) \left[|\lambda| f_A'(|\lambda|) + |\lambda|^2 f_A''(|\lambda|) \right] - \left[|\lambda| f_A'(|\lambda|) \right]^2 \right\}^{1/2}$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. In particular, we have

(33)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x^{2}) - \left[\widetilde{f}(\lambda x) \right]^{2} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \frac{\left\| x - 1 \right\|^{2}}{\left(1 - \left\| x \right\|^{p} \right)^{\frac{1}{p}} \left(1 - \left\| x \right\|^{q} \right)^{\frac{1}{q}}} \left[f_{A}^{2} \left(|\lambda| \right) - f_{A^{2}} \left(|\lambda|^{2} \right) \right]^{1/2}$$

$$\times \left\{ f_{A} \left(|\lambda| \right) \left[|\lambda| \, f_{A}' \left(|\lambda| \right) + |\lambda|^{2} \, f_{A}'' \left(|\lambda| \right) \right] - \left[|\lambda| \, f_{A}' \left(|\lambda| \right) \right]^{2} \right\}^{1/2} .$$

Proof. Using the inequality (18) we have for $n \geq 1$ that

(34)
$$\left\| \sum_{i=0}^{n} \alpha_{i} \lambda^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} (xy)^{i} - \sum_{i=0}^{n} \alpha_{i} \lambda^{i} x^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} y^{i} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right]^{1/2}$$

$$\times \left[\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \sum_{i=0}^{n} i^{2} |\alpha_{i}| |\lambda|^{i} - \left(\sum_{i=0}^{n} i |\alpha_{i}| |\lambda|^{i} \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \left(\sum_{j=0}^{n-1} \|x^{j+1} - x^{j}\|^{p} \right)^{\frac{1}{p}} \left(\sum_{j=0}^{n-1} \|y^{j+1} - y^{j}\|^{q} \right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. Observe that

$$\sum_{j=0}^{n-1} \|x^{j+1} - x^j\|^p \le \sum_{j=0}^{n-1} \|x^j (x-1)\|^p \le \|x-1\|^p \sum_{j=0}^{n-1} \|x^j\|^p$$

$$\le \|x-1\|^p \sum_{j=0}^{n-1} \|x\|^{jp} = \|x-1\|^p \frac{1-\|x\|^{np}}{1-\|x\|^p},$$

which implies that

$$\left(\sum_{j=0}^{n-1} \|x^{j+1} - x^j\|^p\right)^{\frac{1}{p}} \le \|x - 1\| \left(\frac{1 - \|x\|^{np}}{1 - \|x\|^p}\right)^{\frac{1}{p}}.$$

Similarly,

$$\left(\sum_{j=0}^{n-1} \|y^{j+1} - y^j\|^q\right)^{\frac{1}{q}} \le \|y - 1\| \left(\frac{1 - \|y\|^{nq}}{1 - \|y\|^q}\right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

From (34) we get

(35)
$$\left\| \sum_{i=0}^{n} \alpha_{i} \lambda^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} (xy)^{i} - \sum_{i=0}^{n} \alpha_{i} \lambda^{i} x^{i} \sum_{i=0}^{n} \alpha_{i} \lambda^{i} y^{i} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \left[\left(\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \right)^{2} - \sum_{i=0}^{n} |\alpha_{i}|^{2} |\lambda|^{2i} \right]^{1/2}$$

$$\times \left[\sum_{i=0}^{n} |\alpha_{i}| |\lambda|^{i} \sum_{i=0}^{n} i^{2} |\alpha_{i}| |\lambda|^{i} - \left(\sum_{i=0}^{n} i |\alpha_{i}| |\lambda|^{i} \right)^{2} \right]^{\frac{1}{2}}$$

$$\times \|x - 1\| \|y - 1\| \left(\frac{1 - \|x\|^{np}}{1 - \|x\|^{p}} \right)^{\frac{1}{p}} \left(\frac{1 - \|y\|^{nq}}{1 - \|y\|^{q}} \right)^{\frac{1}{q}},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. If we denote $g(u) := \sum_{n=0}^{\infty} \alpha_n u^n$, then for |u| < R we have

$$\sum_{n=0}^{\infty} n\alpha_n u^n = ug'(u)$$

and

$$\sum_{n=0}^{\infty} n^2 \alpha_n u^n = u \left(ug'(u) \right)'.$$

However

$$u(ug'(u))' = ug'(u) + u^2g''(u)$$

and then

$$\sum_{n=0}^{\infty} n^2 \alpha_n u^n = u g'(u) + u^2 g''(u).$$

Therefore

$$\sum_{n=0}^{\infty} n^2 |\alpha_n| |\lambda|^n = |\lambda| f'_A(|\lambda|) + |\lambda|^2 f''_A(|\lambda|)$$

and

$$\sum_{n=0}^{\infty} n |\alpha_n| |\lambda|^n = |\lambda| f_A'(|\lambda|)$$

for $|\lambda| < R$.

Since all the series whose partial sums are involved in (35) are convergent, then by letting $n \to \infty$ in (35) we deduce the desired inequality (32). Corollary 4.4. With the assumptions of Theorem 4.3, we have

(36)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x y) - \widetilde{f}(\lambda x) \, \widetilde{f}(\lambda y) \right\|$$

$$\leq \frac{\sqrt{2}}{2} \frac{\|x - 1\| \|y - 1\|}{\left(1 - \|x\|^{2}\right)^{\frac{1}{2}} \left(1 - \|y\|^{2}\right)^{\frac{1}{2}}} \left[f_{A}^{2}(|\lambda|) - f_{A^{2}}(|\lambda|^{2}) \right]^{1/2}$$

$$\times \left\{ f_{A}(|\lambda|) \left[|\lambda| f_{A}'(|\lambda|) + |\lambda|^{2} f_{A}''(|\lambda|) \right] - \left[|\lambda| f_{A}'(|\lambda|) \right]^{2} \right\}^{1/2}$$

and, in particular

(37)
$$\left\| \widetilde{f}(\lambda \cdot 1) \, \widetilde{f}(\lambda x^{2}) - \left[\widetilde{f}(\lambda x) \right]^{2} \right\|$$

$$\leq \frac{\sqrt{2}}{2} \frac{\left\| x - 1 \right\|^{2}}{1 - \left\| x \right\|^{2}} \left[f_{A}^{2}(|\lambda|) - f_{A^{2}}(|\lambda|^{2}) \right]^{1/2}$$

$$\times \left\{ f_{A}(|\lambda|) \left[|\lambda| \, f_{A}'(|\lambda|) + |\lambda|^{2} \, f_{A}''(|\lambda|) \right] - \left[|\lambda| \, f_{A}'(|\lambda|) \right]^{2} \right\}^{1/2}.$$

5. Some Particular Cases of Interest

Consider the function $f: D(0,1) \to \mathbb{C}$ defined by

$$f(\lambda) = (1 - \lambda)^{-1} = \sum_{k=0}^{\infty} \lambda^{k} = f_{A}(\lambda).$$

Then

$$f_{A^2}(\lambda) := \sum_{n=0}^{\infty} \lambda^n = (1 - \lambda)^{-1},$$

which implies that

$$f_A^2(|\lambda|) - f_{A^2}(|\lambda|^2) = \frac{2|\lambda|}{(1-|\lambda|)^2(1+|\lambda|)}, |\lambda| < 1$$

and by (28), we have for $x, y \in \mathcal{B}$ with xy = yx, ||x||, ||y|| < 1 and $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ that

(38)
$$\|(1-\lambda)^{-1} (1-\lambda xy)^{-1} - (1-\lambda x)^{-1} (1-\lambda y)^{-1} \|$$

$$\leq \frac{|\lambda| \|x-1\| \|y-1\|}{(1-|\lambda|)^2 (1+|\lambda|) (1-\|x\|) (1-\|y\|)}.$$

We also have for $|\lambda|, ||x|| < 1$ that

(39)
$$\left\| (1-\lambda)^{-1} \left(1 - \lambda x^2 \right)^{-1} - (1-\lambda x)^{-2} \right\| \le \frac{\left| \lambda \right| \left\| x - 1 \right\|^2}{\left(1 - \left| \lambda \right| \right)^2 \left(1 + \left| \lambda \right| \right) \left(1 - \left\| x \right\| \right)^2}.$$

For the function $f(\lambda) = (1 - \lambda)^{-1}$ we have

$$f_{A}(|\lambda|) \left[|\lambda| f'_{A}(|\lambda|) + |\lambda|^{2} f''_{A}(|\lambda|) \right] - \left[|\lambda| f'_{A}(|\lambda|) \right]^{2}$$

$$= \frac{1}{1 - |\lambda|} \left[\frac{|\lambda|}{(1 - |\lambda|)^{2}} + \frac{2|\lambda|^{2}}{(1 - |\lambda|)^{3}} \right] - \frac{|\lambda|^{2}}{(1 - |\lambda|)^{4}}$$

$$= \frac{|\lambda|}{(1 - |\lambda|)^{4}}.$$

From the inequality (32) we then have for $x, y \in \mathcal{B}$ with xy = yx, ||x||, ||y|| < 1and $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ that

$$\begin{aligned} & \left\| (1-\lambda)^{-1} (1-\lambda xy)^{-1} - (1-\lambda x)^{-1} (1-\lambda y)^{-1} \right\| \\ & \leq \frac{\sqrt{2}}{2} \frac{\|x-1\| \|y-1\|}{(1-\|x\|^p)^{\frac{1}{p}} (1-\|y\|^q)^{\frac{1}{q}}} \left[\frac{2 |\lambda|}{(1-|\lambda|)^2 (1+|\lambda|)}, \right]^{1/2} \\ & \times \left\{ \frac{|\lambda|}{(1-|\lambda|)^4} \right\}^{1/2}, \end{aligned}$$

which is equivalent to

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$. If we consider the function

$$f(\lambda) = (1 + \lambda)^{-1} = \sum_{k=0}^{\infty} (-1)^k \lambda^k,$$

then the inequalities (38)-(40) also holds with "+" instead of "-" in the left hand side expressions such as $(1 - \lambda x)^{-1}$ etc.

We consider the modified Bessel function functions of the first kind

$$I_{\nu}(\lambda) := \left(\frac{1}{2}\lambda\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}\lambda^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}, \ \lambda \in C$$

where Γ is the Gamma function and ν is a real number. An integral formula to represent I_{ν} is

$$I_{\nu}(\lambda) = \frac{1}{\pi} \int_{0}^{\pi} e^{\lambda \cos \theta} \cos(\nu \theta) d\theta - \frac{\sin(\nu \pi)}{\pi} \int_{0}^{\infty} e^{-\lambda \cosh t - \nu t} dt,$$

which simplifies for ν an integer n to

$$I_n(\lambda) = \frac{1}{\pi} \int_0^{\pi} e^{\lambda \cos \theta} \cos(n\theta) d\theta.$$

For n = 0 we have

$$I_0(\lambda) = \frac{1}{\pi} \int_0^{\pi} e^{\lambda \cos \theta} d\theta = \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4}\lambda^2\right)^k}{\left(k!\right)^2}, \ \lambda \in C.$$

Now, if we consider the exponential function

$$f(\lambda) = \exp(\lambda) = \sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k,$$

then for $\rho > 0$ we have

$$f_{A^2}(\rho) = \sum_{k=0}^{\infty} \frac{1}{(k!)^2} \rho^k = I_0(2\sqrt{\rho}),$$

which implies that

$$f_A^2(|\lambda|) - f_{A^2}(|\lambda|^2) = \exp(2|\lambda|) - I_0(2|\lambda|), \ \lambda \in C.$$

Making use of the inequality (28), we have for $x, y \in \mathcal{B}$ with xy = yx, ||x||, ||y|| < 1 and $\lambda \in \mathbb{C}$ that

(41)
$$\|\exp(\lambda (xy+1)) - \exp(\lambda (x+y))\|$$

$$\leq \frac{1}{2} \frac{\|x-1\| \|y-1\|}{(1-\|x\|) (1-\|y\|)} \left[\exp(2|\lambda|) - I_0(2|\lambda|)\right],$$

In particular, we have for ||x|| < 1

(42)
$$\left\| \exp\left(\lambda \left(x^2 + 1\right)\right) - \exp\left(2\lambda x\right) \right\| \le \frac{1}{2} \frac{\|x - 1\|^2}{\left(1 - \|x\|\right)^2} \left[\exp\left(2|\lambda|\right) - I_0\left(2|\lambda|\right) \right]$$

for any $\lambda \in \mathbb{C}$.

For $f(\lambda) = \exp(\lambda)$ we have

$$f_A(|\lambda|) \left[|\lambda| f_A'(|\lambda|) + |\lambda|^2 f_A''(|\lambda|) \right] - \left[|\lambda| f_A'(|\lambda|) \right]^2 = |\lambda| \exp\left(2|\lambda|\right).$$

If $x, y \in \mathcal{B}$ with xy = yx and ||x||, ||y|| < 1, then from (32) we have for $\lambda \in \mathbb{C}$ the inequality:

(43)
$$\|\exp\left(\lambda \left(xy+1\right)\right) - \exp\left(\lambda \left(x+y\right)\right)\|$$

$$\leq \frac{\sqrt{2}}{2} \frac{\|x-1\| \|y-1\|}{\left(1-\|x\|^{p}\right)^{\frac{1}{p}} \left(1-\|y\|^{q}\right)^{\frac{1}{q}}} |\lambda|^{1/2} \exp\left(|\lambda|\right) \left[\exp\left(2|\lambda|\right) - I_{0}\left(2|\lambda|\right)\right]^{1/2},$$

where p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

Acknowledgment. The authors would like to thank the anonymous referee for valuable comments that have been implemented in the final version of the paper.

References

- [1] M. Biernacki, Sur une inégalité entre les intégrales due à Tchebyscheff. Ann. Univ. Mariae Curie-Sklodowska (Poland), **A5**(1951), 23-29.
- [2] K. Boukerrioua, and A. Guezane-Lakoud, On generalization of Čebyšev type inequalities. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 55, 4 pp.
- [3] P. L. Čebyšev, O približennyh vyraženijah odnih integralov čerez drugie. Soobšćenija i protokoly zasedanii Matemmatičeskogo občestva pri Imperatorskom Har'kovskom Universitete No. 2, 93–98; Polnoe sobranie sočinenii P. L. Čebyševa. Moskva–Leningrad, 1948a, (1882), 128-131.
- [4] P. L. Čebyšev, Ob odnom rjade, dostavljajušćem predel'nye veličiny integralov pri razloženii podintegral'noĭ funkcii na množeteli. Priloženi k 57 tomu Zapisok Imp. Akad. Nauk, No. 4; Polnoe sobranie sočineniĭ P. L. Čebyševa. Moskva–Leningrad, 1948b, (1883),157-169.
- [5] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [6] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1.
- Dragomir, M.V. Boldea, C. Buşe and equalitiesofČebyšev typeforpowerseriesinBanachalgebras, Journal of Online Inequalities Applications 2014, 2014:294 and http://www.journalofinequalitiesandapplications.com/content/2014/1/294.
- [8] S. S. Dragomir, M. V. Boldea and M. Megan, New norm inequalities of Čebyšev type for power series in Banach algebras, Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 65. Online http://rgmia.org/papers/v17/v17a65.pdf.
- [9] S. S. Dragomir, M. V. Boldea and M. Megan, New bounds for Čebyšev functional for power series in Banach algebras via a Grüss'-Lupaş type inequality, Preprint RGMIA Res. Rep. Coll., 17 (2014), Art. 104. Online http://rgmia.org/papers/v17/v17a104.pdf.
- [10] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005...
- [11] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., **39**(1935), 215-226.
- [12] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- [13] D. S. Mitrinović and P. M. Vasić, *History, variations and generalisations of the Čebyšev inequality and the question of some priorities.* Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. **No. 461–497** (1974), 1–30.

SILVESTRU SEVER DRAGOMIR: MATHEMATICS, SCHOOL OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO BOX 14428, MELBOURNE CITY, MC 8001, AUSTRALIA *E-mail address*: sever.dragomir@vu.edu.au

Marius Valentin Boldea: Mathematics and Statistics, Banat University of Agricultural Sciences and Veterinary Medicine Timişoara, 119 Calea Aradului, 300645 Timişoara, România

E-mail address: marius.boldea@usab-tm.ro

MIHAIL MEGAN: DEPARTMENT OF MATHEMATICS, WEST UNIVERSITY OF TIMIŞOARA, B-DUL V. PÂRVAN 4, 1900-TIMIŞOARA, ROMÂNIA

E-mail address: megan@math.uvt.ro