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ABSTRACT. Some Griiss-Lupas type inequalities for p-norms of sequences in Ba-
nach algebras are obtained. Moreover, if f(A) = > @, A" is a function de-
fined by power series with complex coefficients and convergent on the open disk
D(0,R) C C, R> 0 and z,y € B, a Banach algebra, with xy = yz, then we also
establish some new upper bounds for the norm of the Cebysev type difference

F N f(Azy) — f(Ax) f(Ay), A€ D(0,R).
These results build upon the earlier results obtained by the authors. Applications

for some fundamental functions such as the exponential function and the resolvent
function are provided as well.

1. INTRODUCTION

In 1935, G. Griiss [11] proved the following integral inequality which gives an
approximation of the integral mean of the product in terms of the product of the
integral means integrals as follows:

/ (x) dx
4

(1) 'b—a/f d:v——/f ) dx -
where f, g : [a,b] — R are integrable on [a, b] and satisfying the assumption

(@ —¢) (0 —7)

p<f(z)<P,y<g(x)<T
for each x € [a, b] where ¢, ®,~,I" are given real constants.
Moreover the constant }L is sharp in the sense that it can not be replaced by a
smaller one.
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16 S. S. DRAGOMIRR, M. V. BOLDEA, AND M. MEGAN

For a simple proof of (1) as well as for some other integral inequalities of Griiss’
type see the Chapter X of the recent book [12] by Mitrinovié, Pecari¢ and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski [1] established the
following discrete version of Griiss’ inequality, see also [12, Ch. X]:

Theorem 1.1. Let a = (ay,...,a,) ,b = (b1, ...,b,) be two n-tuples of real numbers
such thatr < a; < R and s < b; < S fori=1,...,n. Then one has the inequality:

I I 1 <

<215 (- 3l) -nis—s

when [x] is the integer part of x,x € R.

In 1981, A. Lupas [12, Ch. X] proved some similar results for the first difference
of a as follows :

Theorem 1.2. Let a,b two monotonic n-tuples in the same sense and p a positive
n-tuple. Then

2
. . 1 o 1 .,
@ i el g -0 | 3 (3 )
o 10 — =5 iti © 5 0
L z':lp P z‘:1p P i:lp

2
] — ] —
< L — s A_._E'Q.__E'.
B 1§I?§a;’f(—1 |a[2+1 aZ| 1513?—1 |bz+1 bZ| P, i ( n Zpl)

i=1 i=1

If there exists the numbers a,ay,r,r1,(rry > 0) such that ap = a + kr and b =
aj + kry, then in (8) the equality holds.

For some generalizations of Gruss’ inequality for isotonic linear functionals de-
fined on certain spaces of mappings see Chapter X of the book [12] where further
references are given .

In order to extend the above results for Banach algebras, we need some prelimi-
nary facts as follows:

Let B be an algebra. An algebra norm on B is a map ||-|| : B—[0, 00) such that
(B,]|-]|) is a normed space, and, further:
lab]l < {lall [[ol

for any a,b € B. The normed algebra (B, ||-||) is a Banach algebra if ||-|| is a complete
norm.

We assume that the Banach algebra is unital, this means that B has an identity
1 and that ||1|| = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse



FURTHER BOUNDS FOR CEBYSEV FUNCTIONAL 17

of a and written a™! or é The set of invertible elements of B is denoted by Invi.

If a,b €InvB then ab €lnvB and (ab)™" = b~laL.
For a unital Banach algebra we also have:
(i) If a € B and lim,_,s ||a]|'/™ < 1, then 1 — a €InvB;
(ii) {a € B: ||l —a| < 1} ClnvB;
iii)
(iv) The map InvB 3 a — a~! €InvB is continuous.
For simplicity, we denote A1, where A € C and 1 is the identity of B, by A. The
resolvent set of a € B is defined by

pla) ={A e C: \—ae€lnvB};

the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais R, : p(a) =InvB, R, (\) := (A —a)"". For each A,y € p(a) we have the
identity

(iii) InvB is an open subset of B;

Ra (’7) - Ra ()‘> = ()‘ - 7) Ra (A) Ra (7) .

Let f be an analytic functions on the open disk D (0, R) given by the power series
fN) =320 (A < R). If v (a) < R, then the series ) °° aja’ converges in
the Banach algebra B because Y% |a;| [[a’|| < oo, and we can define f (a) to be
its sum. Clearly f (a) is well defined and there are many examples of important
functions on a Banach algebra B that can be constructed in this way. For instance,
the exponential map on B denoted exp and defined as

[e.9]

1 .
expa := E ﬁaj for each a € B.
j=0 "

It is known that if x and y are commuting, i.e. xy = yz, then the exponential
function satisfies the property
exp (x) exp (y) = exp (y)exp (x) = exp (z + ) .
Also, if z is invertible and a,b € R with a < b then

/ exp (tz) dt = 7" [exp (bx) — exp (ax)].

Moreover, if x and y are commuting and y — z is invertible, then

/0 exp (1 —s)x+ sy)ds = (y — )" [exp (y) — exp (z)].

Inequalities for functions of operators in Hilbert spaces may be found in the
recent monographs [5], [6], [10] and the references therein.
Let a,, be nonzero complex numbers and let

1
R =

lim sup |ozn|% .
Clearly 0 < R < oo, but we consider only the case 0 < R < 0.
Denote by:
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Ae C: |\ < R}, if R < o0

consider the functions:

and
A= fa(N): D(0,R) — C, fa(X Z!%IA”.
Let B be a unital Banach algebra and 1 its unity. Denote by
B(O,R):{g631||m||<R}, if R < 0o

if R = oo.
We associate to f the map:

x> f(z): B(O,R) = B, f(x Zan

Obviously, f is correctly defined because the series ano a,x™ is absolutely con-
vergent, since >~ |lanx™|| < D07 || [Jz]|"

In addition, we assume that sy := > 7 n?|a,| < co. Let s := Y oo |an| < oo
and sp =) n|a,| < co.

With the above assumptions we have that [7]:

Theorem 1.3. Let A\ € C such that max{|\|,|\]’} < R < oo and let z,y € B with
x|, lyll <1 and zy = yx. Then:

(i) We have
(4) |70 D FOwy) = F o) Fow)|
< V2gmin{|la — 1, lly — 11} fa (1A
where:
(5) )? = 5089 — 2.

(ii) We also have
©) [0 Fay) = T ) T Ow)|| < v2min {llz = 111, ly = 111} £ (A)

A R A AT o

For other similar results, see [7], [8] and [9]
Motivated by the above results we establish in this paper other similar inequal-
ities for the norm of the Cebysev difference

FO1) fday) — F () f ()
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via some Griiss’-Lupag type inequality for p-norms with p > 1, where A is a complex
number and the vectors xz, y belong to the Banach algebra . Applications for some
fundamental functions such as the exponential function and the resolvent function
are provided as well.

2. A DISCRETE INEQUALITY OF GRUSS TYPE FOR 1-NORM

The following inequality of Griiss type holds.

Theorem 2.1. Let B be a Banach algebra over K (=R,C) , a;,b; € B and o; € K
(t=1,...,n). Then we have the inequality:

all Zalalzall
n n—1 n—1

(z\az) Sl S 2l S .
=1 =1 =1

where Aa; == a1 —a; (i=1,...n—1) and Ab; :=by1 —b; (i=1,...,n—1) are
the usual forward differences.
The constant % 15 sharp in the sense that it cannot be replaced by a smaller constant.

(7)

Oéz

l\')IH

Proof. Let us start with the following identity in Banach algebras which can be
proved by direct computation

ZaZZaza” ZaaZZab Zaiaj(aj—ai)(bj—bi)

- i,j:l

= Z e71e%; (aj — ai) (bj - bi) :

1<i<j<n
As i < 7, we can write

-1

j—1 j—1
aj—ai:Z(akH—ak):ZAak and bj—bizz b — b)) = ZAbl
k=i =1

k=i

.

Using the generalized triangle inequality, we have successively:

n n n n Jj—1 Jj—1
a; Z O{iaibi — Z a;a; Z Oéibi Z Q04 Z Aak Z Abl
= i=1 i=1 i=1 1<i<j<n k=i l=1
j—1 j—1
< D0 allagl D A | Ab
j_klzz j_llzz
< 3 Jaillogl 3 1Aal 3 1an] = A
k=1 l=1

(8)

1<i<j<n
1<i<j<n
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It is obvious for all 1 <7 < j < n — 1, we have that

7—1 n—1
> llAar] <> Al
k=1 k=1

and
j—1 n—1
D AL <> Ab|
=i =1
and then
n—1 n—1
(9) A Ak D NAL] DY el fay).
k=1 =1 1<i<j<n

Now, let us observe that

n

1
(10) > ail sl = 3 > il lagl = lail |y

1<i<j<n Li,j=1 i=j

[ n n n T
2

=S D el D lal =D il

| i=1 j=1 i=1 i

[ 2

1 n n )

() S

i =1 =1

Using (8)-(10), we deduce the desired inequality (7).
To prove the sharpness of the constant %, let us assume that (7) holds with a
constant ¢ > 0. That is,

n n n n
Z (67 Z ozl-aibi — Z a,;a; Z Ckibi
=1 =1 i=1 =1
n 2 n n—1 n—1
<c <Z Iai!> =X laal®| Do lAal Y AL
i=1 i=1

i=1 i=1

(NSRS

(11)

for all a;, b;,; (i =1,...,n) as above and n > 2.
Choose in (7) n = 2 and compute

2 2 2 2
Z a; Z oziaz»bi — Z a;a; Z Oéibi = % Z ;04 (CLi - (Ij) (bz - b])
=1 i=1 i=1 i=1 3,7=1
= Y g (ai—a;) (b — b))
1<i<y<2

= (X109 (a1 — Clg) (bl — bg) .
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Also,
1 1
D7 aullog) D IAal D 1AL = |aa e [lar — az b1 = bl -
1<i<y<L2 i=1 =1
Substituting in (11), we obtain
| || [lar — az| [|br — ba|| < 2¢|eu|as| |lar — as|| |1 — baf|-

If we assume that oy, s > 0, a1 # ag, by # b, then we obtain ¢ > %, which proves
the sharpness of the constant % 0

Remark 2.2. Let B be a Banach algebra over K (=R,C), a; € B and «o; € K
(t=1,...,n). Then we have the inequality:

n n n 2
(12) ZaiZaia? — (Z oziai>
=1 =1 i=1

IN
N | —

n 2 n n—1 2
<Z|Oﬁ|> = el ZHA%‘H) :
i=1 ' i=1

The constant % is best possible.
The following corollary holds.
Corollary 2.3. Under the above assumptions for a;,b; (i =1,...,n), we have the

imequality

(13)

I I 1 <

and the constant % 18 sharp.
In particular, we have

n—1 n—1
1 1
<3 (1-2) T1aed X 1as.
=1 =1

3. AN INEQUALITY OF GRUSS TYPE FOR p-NORM

The following result that provides a version for the p-norm, p > 1 of the forward
difference also holds.
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Theorem 3.1. Let B be a Banach algebra over K (=R,C) | a;,b; € B and o; € K
(1=1,...,n). Then we have the inequality:

azz&zaz i Zazazz@z i
n—1 % n—1 %

< Y (=)l oyl (leﬁakllp> (leﬁbkllq> :
k=1 k=1

1<j<i<n

(14)

where p > 1, %+%:1.
The constant C' = 1 in the right hand side of (7) is sharp in the sense that it
cannot be replaced by a smaller one.

Proof. From the proof of Theorem 2.1 we have

E Oé’L § alal 7 E ala"L E al [

=1 =1

< Y IaillajIZIIAakHZIIAbzII =: A.
k=3 1=

1<j<i<n

(15)

Using Holder’s discrete inequality, we can state that

ZHA%H <(i—Jj)e <Z||Aaka>

and

ZHAka < (i—j)r (ZHAkaq)

where p,q > 1 and é + 5 = 1, and then, by multiplication, we have

1) A< Y laillayl G- ) (anm) (2||Abk||q>

1<j<i<n

3=

As
i—1 n—1
D llAar]” <> | Ak
k=3 k=1
and
i—1 n—1
Z IAbL[T <> 1 AB,
k=1

for all 1 < j < i <n, then by ( 5) and (16), we get the desired inequality (14).
To prove the sharpness of the constant, let us assume that (14) holds with a
constant C' > 0. That is,
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(17)

j;D; Zazazzaz i

% n—1 %

<C Y (i—4)laillayl <Z||Aak||p> (Zlmbkllq)
k=1

1<j<i<n

Oéz

Choose n = 2. Then

2 2 2 2
ZO&Z‘ZOZZ‘CLZ'[)Z‘ — ZaiaiZaibi = |O[1| |O./2| ||CL1 — CLQH ||b1 — b2||
i=1 i=1 i=1

and

> (=)l o] (Z HAaka)p (ZHAka‘Z)q

1<j<i<2

= |ou||aal [[ar — aql| [|br — bol .
Therefore, from (17), we obtain
| ol [|ar — aal] [[b1 — b2l < C'lou| || [Jar — azl] [[b1 — ba|

for all a; # as, by # by, and then C' > 1, which proves the sharpness of the
constant. [l

Remark 3.2. A coarser upper bound, which can be more useful may be obtained
by applying Cauchy-Schwartz’s inequality:

> (i—j)|04z'||04j|§< > |az'||aj|)

1<j<i<n 1<j<i<n

N[
[NIE

( > laillag) (i —1)2)

1<j<i<n
and taking into account that
1 n 2 n
2
Z | oy | = B (Z |Oéi|> - Z |cvi
1<j<i<n i=1 i=1
and

1
Z |ail |a| (i = J) 252 a;| |ay| 2_])

1<j<i<n =1
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Thus, from (14), we can state the inequality

(18) ozz 1aib; Z&lazzaz i
(:E:!CW’> = el D el Y i ] - <§£:i|6%|>
=1 =1 =1 =1 =1
n—1 % n—1 %
X (Z HAaka> (Z HAkaq> ,
k=1 k=1
where p > 1, %—l—%:l.

The following corollary holds.

Corollary 3.3. With the above assumptions, we have

(19)

I I 1 <

1 n—1 % n—1 %
(zuaam) (zmuq)
k=1 k=1

The constant % 15 the best possible.

1,1
where p > 1, 5+5_1'

Proof. The proof follows by (7), putting «; = % and taking into account that

> @)

1<j<i<n
=Y 2=+ D> B-HN+.+ > (n—j

1<5<2 1<5<3 1<j<n
=2-2-(142)+3-3-(14+2+3)+..4+n-n—(14+2+...4+n)
= 124224+ 40 —1—-(1+2)—(14+243)—...—(14+2+..+n)

_Zkz Z k:+1 <Z’f2 Z’“) n—l)’

and the corollary is thus proved.
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Remark 3.4. If in (14) and (19) we assume that p = ¢ = 2, then we get the
inequalities:

(20) > oY e Z%Zom
=1 =1
n—1 % n—1 %
< S (- hlallay (z uAakn?) (z uAbknz)
1<j<i<n k=1 k=1
and
o) ITUEED SIS S
- ai%; — — ai - — i
ey ey N
1 n—1 % n—1 %
(zumku?) (zuAbku?) ,
k=1 k=1
respectively.

We also have the inequality

Z%Za’al i Zoz aZZab

(22)

N

(Z |Oéz'|> - Z o | Z || ZiQ || — (Zl |04z'|>
i=1 i=1 =1 =1 =1

n—1 n—1 %
X (Z ’|Aak||2> (ZHAkaQ)

k=1 k=1

In the case when b; = a;, i € {1,...,n} we get from (20)

(23) Z&zzaza —(Z%%) < > (’i—j)!ai!!aﬂ(iHAGkHQ)

i=1 i=1 1<j<i<n

M=

and from (22)

(24) Z a; Zocza —~ (Z azaz>2

=1 =1

-1

n 2 n n n n
(Z|%|> =D sl D] lal Y i el — (Zi|ai|>
i—1 i—1 i=1 =1 i—1
n—1
X (Z [ Aall )

k=1

1
2] 2
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4. INEQUALITIES FOR POWER SERIES

As some natural examples that are useful for applications, we can point out that,

if

(25) f(A):Z(_i) )\”:lnli)\,

AeD(0,1);

00 _1n
g()\)zz< )!)\2":008)\, A € G

= (2n)
h()) = i D" e _ g aec
=2+ 1) B ’ ’
o0 o 1
L) =D (=1)"A =1 AEDO;
n=0

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

(26) fA(A):i%Anzlnl_x AeD(0,1);
gA()\)Ii::ﬁ)\Z”—cosh)\ A e C;
ha (V) = f% mw“ —§inh A, A € C;
lA(A):iA":ﬁ NeD(0,1).
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Other important examples of functions as power series representations with non-
negative coefficients are:

=1
(27) exp(N) =) —AT AeC,
n=0

o)

1 1+ 1
—In = an=1 D(0,1);
2 (1—/\) Z2n—1)\ A€ D(01);

Z\/_2n+ /\2”“, Ae D(0,1);
1 n—
tanh™ (A)—;%_l)\? L XeD(0,1)
P+ )T (n+8)Tr (),
2F1<O"5’7’A>_; AT (@B Tty @ Pr>0
AeD(0,1);

where I' is Gamma function.
The following new result holds:

Theorem 4.1. Let f(X) = > " a,\" be a power series that is convergent on the
open disk D(0, R), with R > 0. If x,y € B with xy = yx and ||z||,||y|]| < 1, then
we have for A\ € C with |\| < R the inequality:

(28) |70 10 FOay) = Fow) Fo)|

<0 T V3 e (4P
where
(20) faz (A ZW .

has the radius of convergence R.

Proof. From the inequality (7) we have

=0 =0 1=0 =0
i n 2 n i n—1
< % (Z|Oxl||)\") _Z’ai|2‘)\’2i ”mJH xJHZHyJJrl j |
| \i=0 i—0 =

3
—

- | (i) St e e 0 )

.
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n 2 n n—1 n—1
1 i 2 21 j i
< 5 lz =1y = 1] (Z |ai [A| ) = el A [E N [
0

i=0 i=0 j= §=0

- ) Z
1 - i - 2426
=5 lz =1y = 1] (ZIO@HM) = >l A
i=0 i=0

1= [l=" 1 = llyll"

L= lz[] 1= lyll
for any n > 1.
Since all the series whose partial sums are involved in (30) are convergent, then
by letting n — oo in (30) we deduce the desired inequality (28). O

Corollary 4.2. Let f(\) =07 a, A" be a power series that is convergent on the
open disk D(0, R), with R > 0. If x € B and ||z|| < 1, then we have for A € C with
|A] < R the inequality:

-1
— 2
2 (1 |||l)

o) [FoenFoe) - [Foo] A 0A) = fa (1))

We have the following result as well:

Theorem 4.3. Let f(\) => 7 a,\" be a power series that is convergent on the
open disk D(0, R), with R > 0. If x,y € B with xy = yx and ||z||,||ly|]| < 1, then
we have for A € C with |A\| < R the inequality:

(32) |70 Fay) = Fow) Fow)|
VZ_ =1y 1|

S a 1 1
2 (1= J=)7 (1 = [lyll")

Fa UMD TIALEL (D + AP £2 (AD] = 1Al f4 (!AI)]Q}

1/2

[F2 (A = Faz (IAP)]

1/2
X

—

1.1 _
where p > 1, 54—5_1.

In particular, we have

@ [fonioe - o]
<V MU = g ()]

(1 —[|=]7)7 (1 — [|z||%)

o {2 0D DAL 0D+ I 7 030] = 01 74 0}
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Proof. Using the inequality (18) we have for n > 1 that

(34)

Za,)\ZZal)\l :Uy Zal/\’ ’Zal/\’ ¢
\/— n n 12
2 . .
< 5 {(Z& W) > el /\22}
i=0 i=0

[ | [A] Z i Joul [A]' = (Z Ozz-IAi)Z]

N|=

=0

1

(S ar) (S yfnq)é,

where p > 1, %—l—é:l.
Observe that

3
,_.

n—1
e xfup<zuxf -0l < e -1 3l

<||x—1||pZ||x||” [z —1||p Hpr,

<.
Il
=)

which implies that

n—1 P
Jt1 P _q ( — [|z|" ) _
(jZOIIx wH) <l = UH{ T

Similarly,

|
—

1 1
ST S}
J+1 _ o gl|¢ < -1 ( ’

(j |y | ) <lly =1l {5= Mk

1,1
where p > 1, ]—3—1—5—1.

Il
o

29
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From (34) we get

i a; N\ i a\ (xy)z — i a Nt i Ny’
i=0 i=0 =0 =0

1/2

(35)

2
< D Jad ) =D e AP
=0 1=0

=

n n n 2
XDl Y el AL~ (ZZ || W)
=0 =0 =0

1 1
L= [ll™\ 7 (1= llyll™
< llz = 1) ly — 1] ( ) \To)

where p > 1, %—i—%zl.
If we denote g (u) := > 7, a,u”, then for |u| < R we have

Z na,u” = ug' (u)
n=0

and
Zn%znu” = (ug (uv)).
n=0
However
u(ug' (u) = ug (u) +u’g" (u)
and then
Z n*oau™ = ug (u) +ulg” (u).
n=0
Therefore
> P o A" = [A] £ (D) + AP £4 (A
n=0
and
> nlanl A" = AL £ (1A
n=0
for |A| < R.

Since all the series whose partial sums are involved in (35) are convergent, then
by letting n — oo in (35) we deduce the desired inequality (32). O
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Corollary 4.4. With the assumptions of Theorem 4.3, we have
(36) |70 Fay) = Fow) Fow)|

VZ o le=1llly-1] ,
¥e ; 123D = Faz (AP)]
2 (1= JalP)? (1= gl

X {fA (AN [IALFa (A + AP £2 GAD] = (1AL £ (MI)]Z}

and, 1 particular

1/2
< /

1/2

e o fee) - [Foa]
V2l 1)

— 2
21— |l

1/2

L2 QA = faz (1A])]

1/2

R AT R AT

5. SOME PARTICULAR CASES OF INTEREST
Consider the function f: D (0,1) — C defined by

FO=0=-X0"=>"N=Ff(n).
Then
far(N) =) At =(1=-N"",

which implies that
2|\
(=AD" (L + D

and by (28), we have for z,y € B with xy = yx, ||z||,]|ly]] < 1 and A € C with
|A| < 1 that

FA QA = faz (1A]F) =

Al <1

(38) [(T=X) " (1= Azy) ™ = (=) (1= Ap) 7|
(ALl = 1ily = 1]
T L= DT A AN (@ = ) (= gl
We also have for |A|, ||z|| < 1 that

Al = 1) |
P (L D) (1= [l2l)?

(39) H(l N (=) T - (- ’\x)_QH S Ao
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For the function f (A\) = (1 —A)~" we have
Fa AN [IALFL (D + AP £2 AAD] = (A4 (D]
! [ AL 2P ] o

TP A=) A= a=pp?
_
(1—Ap*

From the inequality (32) we then have for x,y € B with zy = yz, ||z|, ]|yl < 1
and A € C with |A| < 1 that

H(l—)\)fl(l—)\xy)l (1 —Xx)” 1—)\y H

V2 - 1” |y — 1] { 2| 1/2
2 (1= [?)r (1= llyte LA = D* (A

{etim

which is equivalent to

(40) [(T=X) " (1= Azy) ™ = (1= x2) " (1= Ap) 7|
< Az = 1] fly — 1]
T ) (=l = AD (L A

where p > 1, %—i—%:l.
If we consider the function

<

o0

F=0+0"=> (-

k=0

then the inequalities (38)-(40) also holds with ” +” instead of ” —” in the left hand
side expressions such as (1 — \z) ™" etc.
We consider the modified Bessel function functions of the first kind

I, (\) = (1 ) (/\2) redl

2°) SR (v+k+1)

where I' is the Gamma function and v is a real number. An integral formula to
represent [, is

1 g 1 o0
[V ()‘) = _/ e)\cose CcOs (1/0) db — Sin (Vﬂ-) / e*)\coshtﬂ/tdt’
0 0

™ ™

which simplifies for v an integer n to

I, (\) = l/0 % cos (nf) db.

™
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For n = 0 we have

then for p > 0 we have

faz (p

(2v/p),

which implies that
FAUAD) = faz (IA1%) = exp 2]AD) = Lo (2]A), A€ C.

Making use of the inequality (28), we have for z,y € B with zy = yx, ||z||, ||y|| <
1 and A € C that

(41) lexp (A (zy + 1)) — exp (A (z + )|
Ul =1 fly — 1]

< ATl =T P @A)~ o2 A,

In particular, we have for ||z| < 1

(42)  [lexp (A (2® + 1)) —exp (202)|| < 5 lexp (2|A]) = To (2|A])]

for any A € C.
For f (\) = exp (\) we have

Fa (D) A2 QA + AP £2 UADT = IALFA (ADT = A exp (2]A]) -

If z,y € B with xy = yx and ||z||, ||y|]| < 1, then from (32) we have for A\ € C the
inequality:

(43)  Jlexp (A (zy + 1)) — exp (A (z + )|
V2 e =1y =1

2 (1~ JJalP)? (1 -yl
where p > 1, 2—1)—}—%:1.

= A2 exp (JA]) [exp (2]A]) = To (2A])],
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