アクセス数 : 1263 件
ダウンロード数 : 62 件
この文献の参照には次のURLをご利用ください : https://ir.lib.shimane-u.ac.jp/31493
島根大学総合理工学研究科紀要. シリーズB Volume 48
published_at 2015-03
1-harmonic functions on a network
Kurata Hisayasu
Yamasaki Maretsugu
full_text_file
c0020048001.pdf
( 117 KB )
Descriptions
A minimizer of the Dirichlet norm of order 1 is called a 1-harmonic function. The aim of this paper is a research of properties of 1-harmonic functions on a network. First we consider the 1-Dirichlet space and show that every network is of 1-hyperbolic type and that the ideal boundary coincides with the 1-harmonic boundary. Next we introduce the notion of 1-harmonic functions and that of strongly 1-harmonic functions. We discuss the Dirichlet problem and the maximum principle with respect to (strongly) 1-harmonic functions.
About This Article
Pages
Other Article