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Abstract. A minimizer of the Dirichlet norm of order 1 is called a 1-harmonic
function. The aim of this paper is a research of properties of 1-harmonic func-
tions on a network. First we consider the 1-Dirichlet space and show that every
network is of 1-hyperbolic type and that the ideal boundary coincides with the
1-harmonic boundary. Next we introduce the notion of 1-harmonic functions and
that of strongly 1-harmonic functions. We discuss the Dirichlet problem and the
maximum principle with respect to (strongly) 1-harmonic functions.

1. Introduction

For 1 < p < ∞ a minimizer of the Dirichlet norm of order p is called a p-
harmonic function. Properties of p-harmonic functions on a network, as well as
on a Euclidean space, have been deeply studied (see, for example, [4], [5]). A
minimizer of the Dirichlet norm of order ∞ is called an ∞-harmonic function.
Properties of ∞-harmonic functions on a network was studied in [1]. On the other
hand a minimizer of the Dirichlet norm of order 1 seems not to be studied yet. The
aim of this paper is a research of properties of 1-harmonic functions on a network.
In Section 2 we consider the functional space of functions with finite Dirichlet

norms of order 1. In case 1 < p < ∞ a network is classified into that of p-hyperbolic
type and of p-parabolic type (see [4]); on the other hand Theorem 2.1 shows that
any networks are of 1-hyperbolic type. Also Theorem 2.2 implies that all the ideal
boundary points are 1-harmonic boundary points.
In Section 3 we define the notion of 1-harmonic functions as a local minimizer

of the Dirichlet norm of order 1. Also we define the notion of strongly 1-harmonic
functions, which is a limiting case of that of p-harmonic functions as p → 1. We
discuss in Theorem 3.1 the Dirichlet problem with respect to strongly 1-harmonic
functions. Theorems 3.2 and 3.3 show the maximum principle for (strongly) 1-
harmonic functions.
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2. Functional Spaces

Let N = {X,Y,K, r} be an infinite network which is connected and locally finite
and has no self-loop. Here, X is the set of nodes, Y is the set of arcs, K is the
node-arc incidence matrix, and r is the resistance. For y ∈ Y let e(y) = {x ∈
X;K(x, y) ̸= 0}. For a ∈ X let ∂a be the set of neighboring nodes, i.e., x ∈ ∂a if
and only if there exists y ∈ Y such that e(y) = {a, x}. Let X(a) = ∂a ∪ {a}. For
D ⊂ X letD =

∪
a∈D X(a) and ∂D = D\D. Let P = (CX(P ), CY (P ), p) be a path,

where CX(P ) is the series of nodes, CY (P ) is the series of arcs, and p is the path
index. More precisely, let CX(P ) = {x0, x1, . . . , xl} and CY (P ) = {y1, y2, . . . , yl}
with e(yj) = {xj−1, xj}. Then p(yj) = −K(xj−1, yj) = K(xj, yj) and p(y) = 0 for
y /∈ CY (P ). Let Pa,b be the set of paths from a ∈ X to b ∈ X. Let Pa,∞ be the set
of infinite paths from a ∈ X.
Denote by L(X) the set of real valued functions on X. Let L0(X) be the set

of real valued functions on X with finite supports. The sets L(Y ) and L0(Y ) are
similarly defined. For u ∈ L(X) we let

du(y) = −r(y)−1
∑
x∈X

K(x, y)u(x).

For w ∈ L(Y ) and P ∈ Pa,∞ we let

w(P ) =
∑

y∈CY (P )

r(y)p(y)w(y)

if it converges. Let εA be the characteristic function for A ⊂ X. If A is a singleton
{a}, then we denote by εa instead of ε{a}. Most of notations and terminology are
the same as in our preceding papers.
For u ∈ L(X), its Dirichlet sum D1[u] of order 1 is defined by

D1[u] =
∑
y∈Y

r(y)|du(y)| =
∑
y∈Y

∣∣∣∣∣∑
x∈X

K(x, y)u(x)

∣∣∣∣∣ ,
which is a semi-norm on the space D(1)(N) = {u ∈ L(X);D1[u] < ∞}. Notice that
D1[u] does not depend on the resistance r. For an arbitrarily fixed node a0 ∈ X,
the space D(1)(N) is a Banach space with the norm

∥u∥1 = D1[u] + |u(a0)|.

Notice that choosing another a0 ∈ X makes an equivalent norm. Denote byD
(1)
0 (N)

the closure of L0(X) in the Banach space D(1)(N).

Lemma 2.1. The inequalities |u(x) − u(z)| ≤ D1[u] and |u(x)| ≤ ∥u∥1 hold for
any u ∈ D(1)(N) and for any x, z ∈ X. Especially u is bounded.

Proof. We may assume that x ̸= z. Let P be a path from x to z and let CX(P ) =
{x = x0, x1, . . . , xn = z}. Then we have

|u(z)− u(x)| ≤
n∑

i=1

|u(xi)− u(xi−1)| ≤ D1[u].
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It follows that |u(x)| ≤ D1[u] + |u(a0)| = ∥u∥1. □
Proposition 2.1. If un, u ∈ D(1)(N) and ∥un−u∥1 → 0 as n → ∞, then {un(x)}n
converges to u(x) for each x ∈ X.

Proof. Lemma 2.1 shows that |un(x) − u(x)| ≤ ∥un − u∥1 → 0. This means that
{un(x)}n converges to u(x). □
Example 2.1. LetX = {xj}∞j=0, Y = {yj}∞j=1, and r = 1. DefineK byK(xn, yn) =
1 and K(xn−1, yn) = −1 for each n, and K(x, y) = 0 for any other pair (x, y). Let
u(xk) = 1/(k + 1)2. Then u ∈ D(1)(N). In fact,

D1[u] =
∞∑
k=1

|u(xk)− u(xk−1)| =
∞∑
k=1

(
1

k2
− 1

(k + 1)2

)
= 1.

We show that u ∈ D
(1)
0 (N). Let fn(xk) = u(xk) for k ≤ n and fn(xk) = 0 for

k ≥ n+ 1. Then fn ∈ L0(X) and

∥u− fn∥1 = D1[u− fn] = |u(xn+1)|+
∞∑

k=n+2

|u(xk)− u(xk−1)|

=
1

(n+ 2)2
+

∞∑
k=n+2

(
1

k2
− 1

(k + 1)2
)

=
2

(n+ 2)2
→ 0 (n → ∞).

Namely, we see that D
(1)
0 (N) ̸= L0(X).

A network N is said to be of p-hyperbolic type if 1 ̸∈ D
(p)
0 (N); otherwise N

is said to be of p-parabolic type; see [4]. On the other hand any networks are of
1-hyperbolic type. Namely

Theorem 2.1. 1 ̸∈ D
(1)
0 (N).

Proof. Let f ∈ L0(X). We choose a path P ∈ Pa0,∞ and let CX(P ) = {xj}∞j=0 with
x0 = a0. Since f(xj) = 0 for sufficiently large j, we have

∥1− f∥1 ≥
∞∑
j=1

|f(xj)− f(xj−1)|+ |1− f(x0)|

≥
∞∑
j=1

(|f(xj−1)| − |f(xj)|) + 1− |f(x0)| = 1.

This means 1 ̸∈ D
(1)
0 (N). □

Lemma 2.2. Let P ∈ Px0,∞ with CX(P ) = {xj}∞j=0. Let u ∈ L(X). If du(P )
exists, then limn→∞ u(xn) exists and

du(P ) = u(x0)− lim
n→∞

u(xn).
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Proof. Let CY (P ) = {yj}∞j=1 and p the path index of P . We have

n∑
j=1

r(yj)p(yj)du(yj) =
n∑

j=1

(u(xj−1)− u(xj)) = u(x0)− u(xn).

By the assumption the left-hand side converges to du(P ) as n → ∞. We have the
assertion. □

Lemma 2.3. Let u ∈ D
(1)
0 (N). Then du(P ) exists for every P ∈ Px0,∞ and is

equal to u(x0).

Proof. There exists a sequence {fk} in L0(X) such that ∥u− fk∥1 → 0 as k → ∞.
Let w(y) = du(y) and wk(y) = dfk(y). Then limk→∞

∑
y∈Y r(y)|wk(y)−w(y)| = 0.

It follows that
∑

y∈Y r(y)|wk(y) − w(y)| < ε/2 for sufficiently large k. Especially

w(P ) exists and satisfies |wk(P )− w(P )| < ε/2.
Proposition 2.1 shows that |fk(x0)−u(x0)| < ε/2 for sufficiently large k. Apply-

ing Lemma 2.2 to fk we have fk(x0) = wk(P ), and

|u(x0)− w(P )| ≤ |u(x0)− fk(x0)|+ |wk(P )− w(P )| < ε.

Therefore u(x0) = w(P ). □

The p-harmonic boundary is the set of infinite paths P ∈ Pa0,∞ with CX(P ) =

{xn}n such that limn→∞ u(xn) = 0 for all u ∈ D
(p)
0 (N); see [5]. The next theorem

means that 1-harmonic boundary coincides with Pa0,∞.

Theorem 2.2. Let u ∈ D
(1)
0 (N). Then limn→∞ u(xn) = 0 for every P ∈ Px0,∞

with CX(P ) = {xn}n.

Proof. Lemmas 2.2 and 2.3 show the assertion. □

Lemma 2.4. Let u ∈ D
(1)
0 (N). For any ε > 0, there exists a finite subset X ′ of X

such that |u(x)| < ε on X \X ′.

Proof. Since D1[u] =
∑

y∈Y |w(y)| < ∞ with w(y) =
∑

x∈X K(x, y)u(x), there

exists a finite subnetwork N ′ = ⟨X ′, Y ′⟩ of N such that
∑

y∈Y \Y ′ |w(y)| < ε. We

may assume that X \X ′ has no finite connected component. Let x ∈ X \X ′ and
let P ∈ Px,∞ be such that CY (P ) ∩ Y ′ = ∅. Let CX(P ) = {xj}∞j=0 with x0 = x.
Theorem 2.2 shows that

|u(x)| = lim
n→∞

|u(xn)− u(x0)| ≤ lim
n→∞

n∑
j=1

|u(xj)− u(xj−1)|

≤
∑

y∈Y \Y ′

|w(y)| < ε.

□
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3. 1-Harmonic Functions and Strongly 1-Harmonic Functions

For a finite set of real numbers S = {a1, . . . , an} and a real number α we denote
by S+α = {a1+α, . . . , an+α}, αS = {αa1, . . . , αan}, and −S = {−a1, . . . ,−an}.
We renumber S as a1 ≤ a2 ≤ · · · ≤ an and define M−(S) and M+(S) by

M−(S) = M+(S) = am+1 in case n = 2m+ 1;

M−(S) = am, M+(S) = am+1 in case n = 2m.

It is easy to see the following:

Lemma 3.1. (1) M−(S) ≤ M+(S);
(2) M−(S + α) = M−(S) + α and M+(S + α) = M+(S) + α;
(3) If α > 0, then M−(αS) = αM−(S) and M+(αS) = αM+(S);
(4) M−(−S) = −M+(S) and M+(−S) = −M−(S);

(5) Let Sν = {a(ν)1 , . . . , a
(ν)
n } for ν = 1, 2, . . . and S = {a1, . . . , an}. If a(ν)i → ai

as ν → ∞ for each i, then M−(Sν) → M−(S) and M+(Sν) → M+(S) as
ν → ∞.

Lemma 3.2. Let S = {a1, . . . , an} be a finite set of real numbers. Let fS(t) =∑n
i=1 |t− ai| and gS(t) =

∑n
i=1 sgn(t− ai). Let t0 ∈ R.

(1) The following are equivalent:
(a) fS(t) is nondecreasing for t > t0;
(b) M−(S) ≤ t0;
(c) gS(t) ≥ 0 for all t > t0;
(d) (t− t0)gS(t) ≥ 0 for all t > t0.

(2) The following are equivalent:
(a) fS(t) is nonincreasing for t < t0;
(b) t0 ≤ M+(S);
(c) gS(t) ≤ 0 for all t < t0;
(d) (t− t0)gS(t) ≥ 0 for all t < t0.

(3) The following are equivalent:
(a) fS(t) attains its minimum at t = t0;
(b) M−(S) ≤ t0 ≤ M+(S);
(c) gS(t1) ≤ 0 ≤ gS(t2) if t1 < t0 < t2;
(d) (t− t0)gS(t) ≥ 0 for all t ∈ R.

Proof. We shall show (1). It is easy to see that fS is piece-wise linear and is
continuous and that its slope is gS(t) except at t = ai for some i. Since gS(t) is
nondecreasing, it follows that (1a) is equivalent to (1c).
It is obvious that (1c) is equivalent to (1d).
To show the equivalence of (1b) and (1c) it suffices to prove that M−(S) =

inf{t ∈ R; gS(t) ≥ 0}. First assume that n = 2m+ 1 and

a1 ≤ · · · ≤ ai0−1 < ai0 = · · · = am+1 = · · · = aj0 < aj0+1 ≤ · · · ≤ an,
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where i0 ≤ m+ 1 ≤ j0. For t < ai0

gS(t) ≤ (i0 − 1)− (n− i0 + 1) = 2i0 − n− 2

≤ 2(m+ 1)− (2m+ 1)− 2 = −1;

for t > aj0

gS(t) ≥ j0 − (n− j0) = 2j0 − n ≥ 2(m+ 1)− (2m+ 1) = 1.

Thus inf{t ∈ R; gS(t) ≥ 0} = am+1 = M−(S).
Next assume that n = 2m and

a1 ≤ · · · ≤ ai0−1 < ai0 = · · · = am = am+1 = · · · = aj0 < aj0+1 ≤ · · · ≤ an,

where i0 ≤ m < m+ 1 ≤ j0. For t < ai0

gS(t) ≤ (i0 − 1)− (n− i0 + 1) = 2i0 − n− 2 ≤ 2m− 2m− 2 = −2;

for t > aj0

gS(t) ≥ j0 − (n− j0) = 2j0 − n ≥ 2(m+ 1)− 2m = 2.

Thus inf{t ∈ R; gS(t) ≥ 0} = am = M−(S).
Last assume that n = 2m and

a1 ≤ · · · ≤ ai0−1 < ai0 = · · · = am < am+1 = · · · = aj0 < aj0+1 ≤ · · · ≤ an,

where i0 ≤ m < m+ 1 ≤ j0. For t = am

gS(t) = (i0 − 1)− (n−m) = i0 − n+m− 1 ≤ m− 2m+m− 1 = −1;

for am < t < am+1

gS(t) = m− (n−m) = 2m− n = 0.

Thus inf{t ∈ R; gS(t) ≥ 0} = am = M−(S).
We can similarly show (2). Combining (1) and (2) we have (3). □

For a ∈ X and u ∈ L(X(a)), let

Sa(u) = {K(a, y)r(y)du(y); y ∈ Y with a ∈ e(y)} = {u(x)− u(a); x ∈ ∂a}.

We say that u is 1-superharmonic (1-subharmonic, resp.) at a if

M−(Sa(u)) ≤ 0 (M+(Sa(u)) ≥ 0, resp.).

In case that u is both 1-superharmonic and 1-subharmonic at a, we say that u is
1-harmonic at a. For a subset D of X we say that u ∈ L(D) is 1-harmonic (1-
superharmonic, 1-subharmonic, resp.) in D if u is 1-harmonic (1-superharmonic,
1-subharmonic, resp.) at every node in D.
Let a ∈ X and u ∈ L(X(a)). We define the 1-Laplacian ∆1 as

∆1u(a) =
∑
y∈Y

sgn(K(a, y)du(y)) =
∑
y∈Y

K(a, y) sgn(du(y)).
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LetD ⊂ X. A function u ∈ L(D) is said to be strongly 1-superharmonic (strongly
1-subharmonic, resp.) in D if

t
∑
x∈A

∆1(u− tεA)(x) ≥ 0 for all t < 0 (for all t > 0, resp.)

for all finite subset A ⊂ D. A function u ∈ L(D) is said to be strongly 1-harmonic
in D if u is both strongly 1-superharmonic and strongly 1-subharmonic in D. In
case D = {a}, we replace the terminology “in D” by “at a”. It is easy to see that
every constant function is 1-harmonic and strongly 1-harmonic in X.
For A,B ⊂ X we let

A⊖B = {y ∈ Y ; e(y) ∩ A ̸= ∅, e(y) ∩B ̸= ∅}.

For A ⊂ X and y ∈ Y we denote by nA(y) a node in e(y) ∩ A if e(y) ∩ A consists
of exactly one node; otherwise nA(y) is undefined. Note that∑

x∈A

∆1u(x) =
∑

y∈A⊖(X\A)

K(nA(y), y) sgn(du(y)).

Also note that, for y ∈ A⊖ (X \ A), we have

dεA(y) = −r(y)−1K(nA(y), y),

and ∑
x∈A

∆1(u− tεA)(x) =
∑

y∈A⊖(X\A)

sgn
(
K(nA(y), y)du(y) + tr(y)−1

)
=

∑
y∈A⊖(X\A)

sgn
(
K(nA(y), y)r(y)du(y) + t

)
.

This implies that
∑

x∈A ∆1(u−tεA)(x) is nondecreasing function of t. We use these
relations repeatedly.

Remark 3.1. For 1 < p < ∞ the p-Laplacian ∆p is defined as

∆pu(a) =
∑
y∈Y

φp(K(a, y)du(y)),

where φp(t) = |t|p−1 sgn(t). A function u is p-harmonic in D ⊂ X if ∆pu = 0 in D,
which is equivalent to

t
∑
x∈A

∆p(u− tεA)(x) ≥ 0 for all t ∈ R

for all finite subset A ⊂ D. Therefore the definition of the strong 1-harmonicity is
a limiting case of the p-harmonicity.

Proposition 3.1. Let a ∈ X. A function u is strongly 1-harmonic at a if and only
if u is 1-harmonic at a.
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Proof. Suppose that u is strongly 1-harmonic at a. Then t∆1(u − tεa)(a) ≥ 0 for
all t ∈ R. This is equivalent to

t
∑
y∈Y

a∈e(y)

sgn
(
K(a, y)r(y)du(y) + t

)
≥ 0

for all t ∈ R. Lemma 3.2 implies that M−(−Sa(u)) ≤ 0 ≤ M+(−Sa(u)), or
M−(Sa(u)) ≤ 0 ≤ M+(Sa(u)). This means that u is 1-harmonic at a.
Conversely, suppose that u is 1-harmonic at a. We follow the previous implication

in reverse order and obtain that u is strongly 1-harmonic at a. □
Proposition 3.2. Let D ⊂ X. If u is a strongly 1-harmonic function in D, then
u is 1-harmonic in D.

Proof. Suppose that u is strongly 1-harmonic in D. It is obvious that u is strongly
1-harmonic at each node in D. Proposition 3.1 shows that u is 1-harmonic at each
node in D. This implies that u is 1-harmonic in D. □
The converse of Proposition 3.2 is not true; see Example 3.1.

Lemma 3.3. Let D ⊂ X. If u ∈ L(D) satisfies that D1[u] ≤ D1[u− tεA] < ∞ for
all t ∈ R and for each finite subset A of D, then u is strongly 1-harmonic in D.

Proof. Since D1[u] ≤ D1[u− tεA] and dεA(y) = 0 for y /∈ A⊖ (X \ A), we have∑
y∈A⊖(X\A)

r(y)|du(y)| ≤
∑

y∈A⊖(X\A)

r(y)|du(y)− tdεA(y)|,

so that ∑
y∈A⊖(X\A)

|K(nA(y), y)r(y)du(y)| ≤
∑

y∈A⊖(X\A)

|K(nA(y), y)r(y)du(y) + t|.

This means that the right-hand side attains its minimum at t = 0. Lemma 3.2
shows that t

∑
y∈A⊖(X\A) sgn

(
K(nA(y), y)r(y)du(y) + t

)
≥ 0 for all t ∈ R, which is

equivalent to t
∑

x∈A∆1(u− tεA)(x) ≥ 0. □
Theorem 3.1. Let D ⊊ X and f a function on X \D. We consider the extremal
problem

α := inf{D1[u];u = f on X \D}.(1)

If α < ∞, then there exists an optimal solution u to the problem (1). Moreover
each optimal solution is strongly 1-harmonic in D.

Proof. We take a minimizing sequence {un}n of feasible solutions. Fix a node
a ∈ X \ D and let x ∈ D. Lemma 2.1 shows that {un(x)}n is bounded for each
x. By taking a subsequence, we may assume that u(x) := limn→∞ un(x) exists for
each x. Then u is a feasible solution to (1). Fatou’s lemma implies

α ≤ D1[u] ≤ lim inf
n→∞

D1[un] = α.

This means that u is an optimal solution to (1).
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Let u be an optimal solution and let A be a finite subset of D. Since u− tεA is a
feasible solution for each t ∈ R, we have D1[u] ≤ D1[u− tεA]. Lemma 3.3 implies
that u is strongly 1-harmonic in D. □
Theorem 3.2 (the maximum principle for strongly 1-subharmonic functions). Let
D be a finite subset of X. If u is a strongly 1-subharmonic function in D, then
maxD u ≤ max∂D u.

Proof. Suppose that A := {x ∈ D;u(x) > max∂D u} ̸= ∅. For y ∈ A⊖ (X \ A) we
have

K(nA(y), y)r(y)du(y) = −u(nA(y)) + u(nX\A(y)) < 0.

Taking a small t > 0 with K(nA(y), y)r(y)du(y) + t < 0 for all y ∈ A ⊖ (X \ A),
we have ∑

y∈A⊖(X\A)

sgn
(
K(nA(y), y)r(y)du(y) + t

)
< 0,

which contradicts the strong 1-subharmonicity of u. □
Theorem 3.3 (the maximum principle for 1-subharmonic functions). Assume that
N = {X, Y,K, r} is an infinite tree such that deg(x) ≥ 3 for all x ∈ X. Let D be
a finite subset of X. If u is 1-subharmonic in D, then maxD u ≤ max∂D u.

Proof. Suppose that α := maxD u > max∂D u. Let A = {x ∈ D;u(x) = α}. Since
A is a finite set, there exists a ∈ A such that ∂a ∩A consists of at most one node.
For y ∈ {a} ⊖ (X \ {a})

K(a, y)r(y)du(y) = −u(a) + u(nX\{a}(y)).

If nX\{a}(y) ∈ A, then K(a, y)r(y)du(y) = 0; otherwise K(a, y)r(y)du(y) < 0.
Since a has at least three neighbors, we have M+(Sa(u)) < 0, which contradicts
the 1-subharmonicity of u. □
The maximum principle for 1-harmonic functions does not hold in general; see

Example 3.1.

Lemma 3.4. Let D ⊂ X. Let {un}n ⊂ L(D) and u ∈ L(D) be such that
limn→∞ un(x) = u(x) for each x ∈ D.

(1) If un is 1-harmonic (1-subharmonic, 1-superharmonic, resp.) in D for all
n, then u is 1-harmonic (1-subharmonic, 1-superharmonic, resp.) in D.

(2) If un is strongly 1-harmonic (strongly 1-subharmonic, strongly 1-
superharmonic, resp.) in D for all n, then u is strongly 1-harmonic
(strongly 1-subharmonic, strongly 1-superharmonic, resp.) in D.

Proof. (1) Suppose that un is 1-superharmonic in D for all n. Let a ∈ D. Since
M−(Sa(un)) ≤ 0 for all n, Lemma 3.1 shows that M−(Sa(u)) ≤ 0. This means that
u is 1-superharmonic in D. The other statements follows similarly.
(2) Suppose that un is strongly 1-superharmonic in D for all n. Let A be a finite

subset of D. Let t < 0 and ε > 0 be such that t + ε < 0. We take n so large that
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|du(y)− dun(y)| ≤ εr(y)−1 for all y ∈ A⊖ (X \ A). Then
K(nA(y), y)r(y)du(y) ≤ K(nA(y), y)r(y)dun(y) + ε,

so that ∑
y∈A⊖(X\A)

sgn
(
K(nA(y), y)r(y)du(y) + t

)
≤

∑
y∈A⊖(X\A)

sgn
(
K(nA(y), y)r(y)dun(y) + t+ ε

)
.

Since un is strongly 1-superharmonic in D and t+ ε < 0, it follows that the right-
hand side is non-positive, and so is the left-hand side. This implies that u is
strongly 1-superharmonic in D. The other statements follows similarly. □
Example 3.1. Consider the network shown in figure 1. Let u(x0) = u(x1) =
u(x2) = 1 and u(x3) = 0. Let D = {x0, x1, x2}. We easily verify the following:

(1) u is strongly 1-harmonic at x2 and ∆1u(x2) = −1, i.e., the 1-Laplacian does
not vanish for a strongly 1-harmonic function;

(2) u is strongly 1-harmonic at each node in D and not strongly 1-harmonic in
D, i.e., the strong 1-harmonicity is not a local property;

(3) u is 1-harmonic in D and is not strongly 1-harmonic in D;
(4) maxD u > max∂D u, i.e., a 1-harmonic function does not satisfy the maxi-

mum principle.

Example 3.2. Let us consider the network shown in Figure 2. Let u(x0) = 0,
u(x1) = α, u(x2) = β, and u(x3) = 1. It is easily seen that u is strongly 1-
harmonic in {x1, x2} for any α and β with 0 ≤ α ≤ β ≤ 1. This shows that there
are many solutions to the Dirichlet problem with respect to strongly 1-harmonic
functions. Also this implies that Harnack’s inequality does not hold for strongly
1-harmonic functions.

More precisely, we show the following:

Proposition 3.3. Let X = {xn}∞n=−∞ and Y = {yn}∞n=−∞. Let K(xn−1, yn) = −1,
K(xn, yn) = 1 and K(x, y) = 0 for any other pairs. A function u ∈ L(X) is strongly
1-harmonic in X if and only if {u(xn)}n is either non-decreasing or non-increasing.
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Proof. First assume that u is strongly 1-harmonic in X. The maximum principle
(Theorem3.2) shows that {u(xn)}n is either non-decreasing or non-increasing.
Conversely, we assume that {u(xn)}n is non-decreasing. Let A ⊂ X be a finite

set. We need to show that

t
∑
x∈A

∑
y∈Y

K(x, y) sgn(du(y)− tdεA(y)) ≥ 0

for all t ∈ R. Notice that
∑

x∈AK(x, y) sgn(du(y) − tdεA(y)) = 0 for y ∈ Y with
e(y) ⊂ A. Let

{y ∈ Y | e(y) ∩ A consists of exactly one node} = {yl1 , yr1 , yl2 , yr2 , . . . , ylk , yrk}

with l1 < r1 < l2 < r2 < · · · < lk < rk. It suffices to show that

t
∑
x∈A

(
K(x, ylj) sgn(du(ylj)− tdεA(ylj)) +K(x, yrj) sgn(du(yrj)− tdεA(yrj))

)
≥ 0

(2)

for each j and for all t ∈ R.
We know that e(ylj) ∩ A = xlj and e(yrj) ∩ A = xrj−1. The left-hand side of (2)

equals to

t
(
K(xlj , ylj) sgn(du(ylj)− tdεA(ylj)) +K(xrj−1, yrj) sgn(du(yrj)− tdεA(yrj))

)
= t

(
sgn(−

u(xlj)− u(xlj−1)

r(ylj)
+

t

r(ylj)
)− sgn(−

u(xrj)− u(xrj−1)

r(yrj)
− t

r(yrj)
)
)

= t
(
sgn(t− u(xlj) + u(xlj−1)) + sgn(t+ u(xrj)− u(xrj−1))

)
.

(3)

Note that u(xlj)−u(xlj−1) ≥ 0 and u(xrj)−u(xrj−1) ≥ 0. Also note that t(sgn(t−
α) + sgn(t+ β)) ≥ 0 for t ∈ R and for nonnegative numbers α and β. Thus (3) is
nonnegative, and that (2) holds. □

A similar argument shows the following:

Proposition 3.4. Let X = {xm,n}m∈Z,n∈Z and Y = {ym,n, y
′
m,n}m∈Z,n∈Z. Let

K(xm−1,n, ym,n) = −1, K(xm,n, ym,n) = 1, K(xm,n−1, y
′
m,n) = −1, K(xm,n, y

′
m,n) =

1 and K(x, y) = 0 for any other pairs. If u ∈ L(X) satisfies that both {u(xm,i)}i
and {u(xj,n)}j are non-decreasing for each m and n, then u is strongly 1-harmonic
in X.

Proposition 3.5. Let u ∈ D(1)(N) and ṽ ∈ D
(1)
0 (N) satisfy the relation

D1[u− ṽ] = min{D1[u− v]; v ∈ D
(1)
0 (N)}.

Then u− ṽ is strongly 1-harmonic in X.

Proof. For any finite subset A ⊂ X and t ∈ R, we have ṽ + tεA ∈ D
(1)
0 (N), so that

D1[u− ṽ] ≤ D1[u− ṽ − tεA]. Lemma 3.3 shows that u− ṽ is strongly 1-harmonic
in X. □
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Question 3.1. For u ∈ D(1)(N) does there exist ṽ ∈ D
(1)
0 (N) satisfying the relation

in Proposition 3.5?

Proposition 3.6. Denote by H̃D
(1)
(N) the set of u ∈ D(1)(N) such that u is

strongly 1-harmonic in X. Then D
(1)
0 (N) ∩ H̃D

(1)
(N) = {0}.

Proof. Let u ∈ D
(1)
0 (N)∩ H̃D

(1)
(N). Lemma 2.4 implies that, for any ε > 0, there

exists a finite subset D ⊂ X such that |u(x)| < ε for x ∈ X \ D. Theorem 3.2
shows that −ε < min∂D u ≤ minD u ≤ maxD u ≤ max∂D u < ε. This implies that
|u| ≤ ε in X. Since ε is arbitrary, it follows that u ≡ 0. □
Example 3.3. Let HD(1)(N) be the set of u ∈ D(1)(N) such that u is 1-harmonic
in X. We consider the network N shown in Figure 3. Let u(xj) = 1 for j = 0, 1, 2

and u(zj) = 0 for j ≥ 0. Then u ∈ L0(X) ∩ HD(1)(N) ⊂ D
(1)
0 (N) ∩ HD(1)(N).

Namely D
(1)
0 (N) ∩HD(1)(N) ̸= {0}.

Let A and B be mutually disjoint nonempty subsets of X and consider the
following extremal problems:

d1(A,B) = inf{D1[u];u ∈ D(1)(N), u = 1 on A, u = 0 on B},
d1(A,∞) = inf{D1[u];u ∈ L0(X), u = 1 on A}.

Theorem 3.4. Assume that d1(A,B) < ∞. Then there exists an optimal solution
v to the problem d1(A,B) such that 0 ≤ v ≤ 1 in X and v is strongly 1-harmonic
in X \ (A ∪B).

Proof. Let D = X \ (A ∪B). Let f = 1 on A and f = 0 on B. Applying Theorem
3.1 we find an optimal solution u to d1(A,B). Let v = min(max(u, 0), 1). Since
v is also a feasible solution and D1[v] ≤ D1[u], we see that v is also an optimal
solution. Theorem 3.1 implies that v is strongly 1-harmonic in X \ (A ∪B). □
Lemma 3.5. Let {Nn = ⟨Xn, Yn⟩} be an exhaustion of N with A ⊂ X1. Then
limn→∞ d1(A,X \Xn) = d1(A,∞).

Proof. It is easy to see that d1(A,X \ Xn) ≥ d1(A,X \ Xn+1) ≥ d1(A,∞). Con-
versely, for ε > 0, we find u ∈ L0(X) such that D1[u] ≤ d1(A,∞) + ε and u = 1
on A. We take n so large that u = 0 on X \Xn. Then d1(A,X \Xn) ≤ D1[u] ≤
d1(A,∞) + ε. Since ε is arbitrary, we have limn→∞ d1(A,X \Xn) ≤ d1(A,∞). □
Theorem 3.5. For a ∈ X there exists a function u ∈ L0(X) such that u is strongly
1-superharmonic in X, strongly 1-harmonic in X \ {a}, u(a) = 1, and 0 ≤ u ≤ 1
on X.
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Proof. Let A and B be mutually disjoint nonempty subsets of X. Let

EL1(A,B)−1 = inf{H1[w];
w ∈ L+

1 (Y ),∑
y∈CY (P ) r(y)w(y) ≥ 1 for all path P ∈ PA,B

},

EL1(A,∞)−1 = inf{H1[w];
w ∈ L+

1 (Y ),∑
y∈CY (P ) r(y)w(y) ≥ 1 for all path P ∈ PA,∞

},

EW∞(A,∞)−1 = inf{H1[w];
w ∈ L+

∞(Y ),∑
y∈Qw(y) ≥ 1 for all cut Q ∈ QA,∞

}.

For nonempty finite subsets A and B of X with A ∩ B = ∅ and for an exhaustion
{Nn = ⟨Xn, Yn⟩}, Nakamura and Yamasaki [2, Theorem 2.1] and [3, Theorem 3.2,
Theorem 3.4, Corollary 2] showed that

d1(A,B) = EL1(A,B)−1,

lim
n→∞

EL1(A,X \Xn) = EL1(A,∞),

EL1(A,∞)−1 = EW∞(A,∞),

EW∞(A,∞) = inf{
∑
y∈Q

1;Q ∈ QA,∞}.

Lemma 3.5 implies that

d1(A,∞) = inf{
∑
y∈Q

1;Q ∈ QA,∞} = inf{#Q;Q ∈ QA,∞}.

Now let A = {a}. Since d1({a},∞) < ∞, it follows that d1({a},∞) = #Q for
some cut Q ∈ QA,∞. Let A be a finite subset of X such that Q = A⊖(X \A). Let u
be a function such that u = 1 on A and u = 0 on X \A. Then D1[u] = d1({a},∞).
We take n so large that A ⊂ Xn. Then u is an optimal solution to the problem
d1({a}, X\Xn). Theorem 3.1 shows that u is strongly 1-harmonic in X\({a}∪Xn).
Since n is arbitrary, u is strongly 1-harmonic in X \ {a}.
Next we shall prove that u is strongly 1-superharmonic in X. Let D be a finite

subset of X. Let D′ = D \ A. Let

I(t) =
∑
x∈D

∆1(u− tεD)(x), I ′(t) =
∑
x∈D′

∆1(u− tεD′)(x).

We have

I(t) =
∑

y∈D⊖(X\D)

sgn
(
K(nD(y), y)r(y)du(y) + t

)
=

∑
y∈D′⊖(X\D)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
+

∑
y∈(D∩A)⊖(X\D)

sgn
(
K(nD∩A(y), y)r(y)du(y) + t

)
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and

I ′(t) =
∑

y∈D′⊖(X\D′)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
=

∑
y∈D′⊖(X\D)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
+

∑
y∈D′⊖(D∩A)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
,

and obtain

I(t)− I ′(t) =
∑

y∈(D∩A)⊖(X\D)

sgn
(
K(nD∩A(y), y)r(y)du(y) + t

)
−

∑
y∈D′⊖(D∩A)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
.

For y ∈ (D ∩ A)⊖ (X \D)

K(nD∩A(y), y)r(y)du(y) = −u(nD∩A(y)) + u(nX\D(y)) ≤ 0,

and ∑
y∈(D∩A)⊖(X\D)

sgn
(
K(nD∩A(y), y)r(y)du(y) + t

)
≤ 0

for all t ≤ 0. For y ∈ D′ ⊖ (D ∩ A)

K(nD′(y), y)r(y)du(y) = −u(nD′(y)) + u(nD∩A(y)) = 1.

For t ≥ −1 we have ∑
y∈D′⊖(D∩A)

sgn
(
K(nD′(y), y)r(y)du(y) + t

)
≥ 0.

Therefore I(t)−I ′(t) ≤ 0 for −1 ≤ t ≤ 0. Since u is strongly 1-harmonic in X \{a},
we know that I ′(t) ≤ 0 for t < 0, so that I(t) ≤ 0 for −1 ≤ t < 0. Since I(t) is
nondecreasing function of t, it follows that I(t) ≤ 0 for t < 0. This means that u
is strongly 1-superharmonic in X. □
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