タイトルヨミ | アル シュ ノ キョクメン ノ ジコ ドウケイ シャゾウ ト ドウヘン チョクセン ソク ニツイテ
|
日本語以外のタイトル | Automorphisms of Some Surfaces and Equivariant Line Bundles
|
ファイル | |
言語 |
英語
|
著者 |
松永 弘道
|
内容記述(抄録等) | In §1 it is proved that any elliptic surface without exceptional curve admits a canonical involution, which is an extension of the involution in [7]. Since a general elliptic curve admits the unique non trivial involutive isomorphism, then we will call this a canonicall one. By making use of a lemma in III [2], it is easy to construct the involution but in order to find invariant divisors, we make it concretely. Non singular surfaces of degree 4 in P^3 are K3 surfaces and one of them is a singular K3 surface. We deduce an informatiom about the homotopical cell structure of a K3 surface. Automorphisms of this surface are constructed in §2. Some of them translate a global section to another section and others do not preserve the elliptic structure. In the last section some remarks are given about clliptic modular sufaces which are singular K3 surfaces.
|
掲載誌名 |
島根大学理学部紀要
|
巻 | 13
|
開始ページ | 23
|
終了ページ | 29
|
ISSN | 03879925
|
発行日 | 1979-12-20
|
NCID | AN00108106
|
出版者 | 島根大学理学部
|
出版者別表記 | The Faculty of Science, Shimane University
|
資料タイプ |
紀要論文
|
部局 |
総合理工学部
|
他の一覧 |