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In §1 it is proved that any elliptic surface without exceptional curve admits a canonical
involution, which is an extension of the involution in [7]. Since a general elliptic curve admits
the unique non trivial involutive isomorphism, then we will call this a canonical one. By making
use of a lemma in ITI [2], it is easy to construct the involution, but in order to find invariant di-
visors, we make it concretely. Non singular surfaces of degree 4 in P*® are K3 surfaces and one of
them is a singular K3 surface. We deduce an information about the homotopical cell structure
of a K3 surface. Automorphisms of this surface are constructed in §2. Some of them translate
a global section to another section and others do not preserve the elliptic structure. In the last
section some remarks are given about elliptic modular surfaces which are singular K3 surfaces.

§L Some generalities

Let @: S—P be an elliptic surface without any exceptional curve over a non
singular algebraic curve free from multiple singular fibres. The period of a generic
fibre can be represented as (w(u), 1), where Im w(u)>0. Denote by J the elliptic
modular function, then the function i(u)=J(w(u)) is meromorphic in P. Denote
by P’ the set of points in P over which fibres are regular. The restriction S|P’'—P’
is a differentiable torus bundle and the locally constant sheaf G'= U {H (9~ (u), Z);
u eP'} can be extended to a sheaf G over P. Each element B of nl(P’) induces a trans-
formation w(u)—(azw(u)+ by) (cpm(u)+dg)t. According to the notation in II [2],
the surface S belongs to F(j, G) and by a result in II [2], the family &(j, G) admits
a basic element B. Let U’ be the universal covering manifold of P’, then the restriction
B =B|P’ is given by B'=U'x C/g, where C is the complex number field and g is the
group of transformations, n,(P’) x Z x Z(Z is the group of integers) such that

g(B, ny, 1) (i, O)=(Bii, (C+n,(@)+n,) (cpe(@)+dg)™")

for each (@i, )e U’ x C.
For the transformation p: (&, {)—(#, —{), the diagram
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(i1, {) —2Leren2)—, (B, (C+ny (i) +ny) (cpoo(d@) +dp) !

1" I

(7, —{) L&mnnmna) (Ba, (—{—nyw(@)—n,) (Cﬂw(ﬁ) + dp)—l

is commutative, then the involution p determines an involution (p): B'—B’, which
preserves the zero section 0. By the lemma 10.4 III [2], it can be seen that the invo-
lution (p) is extendible to an involution [p]: B—B. But in order to find invariant
divisors, we extend (p) conceretely according to the construction in §8, II [2].

(i) In the neighbourhoods of fibres of type I,, using the representation of x, y
by Weierstrass’ functions p({), p'({) in p. 592, II [2], p induces an involution (x, y)
—(x, —), then the formula (8.40) in II [2] is invariant and so we have an involuiton
[p], which leaves invariant fibres of type I,. For fibres of type I,, it induces (z, w)—
(7, w™1), where w=exp 2mi{, t=exp 2xiil, so the covering map given by (8.44) in II [2]
admits a natural lift [p]: B—B. Thus each fibre of type I, is [p]-invariant.

(ii) For fibres of type IV*, by the relation (2,), p. 591-592 [2], we have

~(51+%)=(3u+5 ) mod z[n + Z

then fixed points by the cyclic group ¢ and so divisors {@,, O,,}, {@,,, O,,} are
non invariant under the action [p], and they are mutually transformed into others by
[p]. For fibres of type IV the situation is quite similar ((23) p. 592-593 [2]).

(iii) For fibres of other types, by the checking in each case, we see that they are
all [pJ-invariant.

Throughout this paper we treate elliptic surfaces without any exceptional curve.
By Theorem 11.1, III [2], any elliptic surface free from multiple singular fibres can be
obtaned by the pasting method from a basic element. Then by the results in § 14, [2],
[7], we have

ProrosiTION 1. Any elliptic surface free from multiple singular fibres admits
a non trivial involution.

ReMARK. The involution constructed in [7] is a special one of the canonical in-

volution.

By the result in §4, [3], any elliptic surface is obtained by logarithmic trans-
formations from an elliptic surface without multiple fibres. The transformation (33)
(36) in §4 [3] is compatible with the involution

(=10 (ca(e™)+d)™ — (= {—(0)) (co(c™) +d)~*,
(0, W)); — (o, w™1));

respectively. Then we have
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COROLLARY. Any elliptic surface admits a non trivial involution.

§2. Hypersurfaces in P?
We consider a non singular hypersurface of degree 4 in the three dimensional
projective space P3,
S: 2 t,zh0z41252243 =0,

potustpatus=a fu

where p=(uq, L1, U2, 13) is @ sequence of non negative integers and ¢ is a complex
number for each u. Let E—P3 be the bundle given by transition functions {e;;=
z;/z;}. Then the divisor [S] determines the line bundle E~4—P3. We have the fol-
lowing exact sequence of sheaves of germs of holomorphic sections,

0— O(E™%) — 0(1) — 05(1) — 0,

where 1 is the trivial line bundle over P3 and Oy is the structure sheaf of S. By this
we have an exact sequence of cohomology groups,

H(P3, 0) — HA(S, O4(1)) — H2(P3, O(E~4)).

Since the canonical bundle of P3 is equal to E~4— P3, then by Theorem 3 and Theorem
2 in [4]. We have

HY(P3, 0)=H*P3, O(E~%))=0 and HYS, O5)=0.
On the other hand we have an exact sequence associated with the embedding S < P3,
0 — T(S) — T(P3|S — v—>0,

where we mean by T( ) the tangent bundle and by v the normal bundle of the
embedding. Since v=[S]]S=E4|S, then the canonical bundle of S is trivial. Thus
the surface S is a K3 surface. The second Betti number of a K3 surface is 22, and its
homology basis and the intersection numbers are known (for example [5]). Then by
the duality between intersection numbers and cup products, and 12.2 (b) [10], it can be
seen that the surface admits the following cell decomposition,

S=K=(V2,S) U e,

where V22, S? denotes the bouquet of 2-spheres and f: de*=S53—V$2,57 is the
homotopy boundary of the 4-cell and its homotopy class is given by

[Bl=2Ze;lc; ¢;]1, asum of Whitehead products,

and g;=+1 or zero, especially g;= —1 for all i=1,..., 20.
By [6], there exists a non singular hypersurface of degree 4 in P3 such that the
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group of automorphisms is an infinite group. For a K3 surface S and its
automorphisms f, g if f is homotopic to g, then the homomorphism

(971w Hy(S, Z) — Hy(S, Z)

is the identity, so by the proposition 2 in §2 [8], g~'f is the identity automorphism of
S, thus f=g. Then we have

ProrosITION 2. The set consisting of homotopy classes of homotopy equi-
valences K—K is an infinite set.

ReEMARK 1. By a result in [1], we have another cell decomposition,
(MzUetu---Ue?)Uet,

where M is a plane curve of genus 3 which is given by the equation z$+ 2§+ 24=0.
Now we consider a typical K3 surface with the Picard number 20, which is given
by the equation,

So: z§+2zt+24+24=0 in P3.

Let us set

_z%'i'iz%__z%liZ% i—\/—l
23,2 2_3,2° >

then we have an elliptic structure of S, over the projective plane P which is given by
D: Sy3[zg, 21, 25, 23] — tEP.

Singular fibres of @ are given as follows:
t=0 - [z, i\/i_zo, Zy £/125] )
t=00 - [2g, k/—12g, 2 +/—12;]
t=1 .. [2o 2y, /12y, £4/120]
t=—1 - [2¢, 21, £/—12y, £/ —12]
t=i - [2g, 29, £/—120, £/124]
t=—1i - [2q, 21, i\/f_zo, +—1z,].

All of these fibres are of type I,. For other ¢ than in the list (L), we have
B=g(t-1)Aa-2(1+1)izd a=-Hi+ D)3-2(- D)z

1 1N 1/, 1
and so set a== t—- >, b= 2<t+ / ), then we have.

@®
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z§=az}—ibz3, z}=—ibz}—azi

2
Further set )1=<Z—3—> , u=@§~_}7@, then the fibre over ¢ is given by the equation,
Z2 2

w?=AMa—ibi)(—ib—al), B)

hence the surface S, is an elliptic surface. The second Chern class of a K3 surface
is 24, then there does not exist other singular fibre.

Next we seek global sections of the elliptic structure @. Set z; =0z, z3=02,,
then we have

z3+iz?=(1+ie?)z3= t(zo —izd)=t(1—ia?)z3,
t(z3—iz)=1(1 —ia?)z3= — (23 +iz}) = — (1 +ia?)z3,
and so

z§  14ie® _ zgt(1—ia?)

22 1(1—=ie?)  z3(1+ie?)

1v2)2 12 T
Thus we have 2= 8 +i§2;2, t=+1 i +;“2, and o=+ % On the other hand,

by the equation z4+ z4+z4+ 24 =0, we have
(1+a%)(z§+23) =0,

hence we obtain 16 sections given by [z,, 0zq, (eXp nrwi/4)z,, a(exp nnifd)zy], n=+1,
+3. In the case t= +1, we have =00 and take [0, 1, 0, exp nrwi/4] as sections.

The second algebraic homology basis is given by 18 divisors in the list (L) and a
generic fibre, and a global section. Then by Theorem 1.1 in [9], the surface S, is a
singular K3 surface, i.e. the Picard number is 20. By Lemma 10.3, 10.4 III [2], the
above 16 sections determine 16 automorphisms of the surface S,. In these automor-
phisms, the ones corresponding to the translations by exp nni/4 keep the divisors
invariant, but the others by o's do not. By the proposition 1, we have

PROPOSITION 2. The surface S, admits 32 automorphisms which preserve the
elllptzc structure. The equivariant Picard number is smaller than 20.

ReMARK 2. The symmetric group S, acts on P3, and the surface S, is invariant
by this action, but the action does not preserve the elliptic structure. Further the
surface S, admits actions given by

(2o, 21, 22, 23] — [0z, i*1zy, 1%22,, 1*32,4],

where sz~=0, 1,2,3 and j=0, 1, 2, 3. Set e=¢(g, &, &,, £5). These actions give a
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transformation group of order 43." The e-type action does not preserve the elliptic
structure. For example, let @,: S,— P be the elliptic structure given by

_zd+iz? _ z}—iz}
T z3+iz3 zg—iz?3>

51

then we have the commutative diagram,

SO £(1,0,0,0) ) SO
D @y

.P £%(1,0,0,0) P

where ¢,(1, 0, 0, 0) is given by the mapping t— —}—

§3. Some elliptic modular surfaces

1 Let I'(4) be the principal congruence subgroup of level 4 in SL(2, Z). Con-
sider the action of I'(4) on the upper half plane. There are 6 cusp points. By the aspect
of the representation of isotropy groups, we have a singular K3 surface Br, [9]. It
has 6 singular fibres of type I, and it is an elliptic surface, and admits 16 global sections,
sp(expmiz/2)=((exp wi(mz +m,)[2))o€ Wy [9]. The automorphisms induced by the
translations of m; do not leave divisors invariant, but the ones corresponding to the
variation of m, leave them invariant. These automorphisms do not include the
canonical one in §1.

2 let I')(7) be the subgroup of SL(2, Z) given by I'y(7)= {(‘; g) eSL(2, Z): ¢=0
mod 7, (%)= 1}, where (%) denotes the Legendre symbol. Then the corresponding

elliptic modular surface By, 4 is a singular K3 surface with singular fibres I, I, IV¥,
IV*. The canonical automorphism [p] does not leave divisors in the fibres of type TV*
invariant as we have seen in § 1.

RemARk. By the formula (E) in §2, the involution ¢: [zq, 24, 2,5, z3]—[20, 21,
—z,, z3] gives an involution (4, u)—(A, —p) of a generic fibre. A generic fibre is
an elliptic curve and a general elliptic curve admits unique involutive isomorphism.
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