ある種の曲面の自己同型写像と同変直線束について

島根大学理学部紀要 Volume 13 Page 23-29 published_at 1979-12-20
アクセス数 : 1201
ダウンロード数 : 83

今月のアクセス数 : 0
今月のダウンロード数 : 0
File
c0010013r004.pdf 659 KB エンバーゴ : 2001-09-29
Title
ある種の曲面の自己同型写像と同変直線束について
Title
Automorphisms of Some Surfaces and Equivariant Line Bundles
Title Transcription
アル シュ ノ キョクメン ノ ジコ ドウケイ シャゾウ ト ドウヘン チョクセン ソク ニツイテ
Creator
Matsunaga Hiromichi
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 13
Start Page 23
End Page 29
Journal Identifire
ISSN 03879925
Descriptions
In §1 it is proved that any elliptic surface without exceptional curve admits a canonical involution, which is an extension of the involution in [7]. Since a general elliptic curve admits the unique non trivial involutive isomorphism, then we will call this a canonicall one. By making use of a lemma in III [2], it is easy to construct the involution but in order to find invariant divisors, we make it concretely. Non singular surfaces of degree 4 in P^3 are K3 surfaces and one of them is a singular K3 surface. We deduce an informatiom about the homotopical cell structure of a K3 surface. Automorphisms of this surface are constructed in §2. Some of them translate a global section to another section and others do not preserve the elliptic structure. In the last section some remarks are given about clliptic modular sufaces which are singular K3 surfaces.
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1979-12-20
Access Rights open access
Relation
[NCID] AN00108106