File | |
language |
eng
|
Author |
KAMEI, RYOSUKE
|
Description | This paper studies the Cauchy problem for the nonlinear Schr¨odinger equation i∂tu − ∂2 xu = f(u) in one space dimension. The nonlinear interaction f(u) is a linear combination of (V ∗x u)u, (V ∗x ¯u)u, (V ∗x u)¯u and (V ∗x ¯u)¯u, where V (x) is a locally integrable function whose Fourier transform satisfies | ˆ V (ξ)| ≲ ⟨ξ⟩−m for some m ≥ 0. The Cauchy problem is well-posed in Hs for s > −(m/2+1/4); furthermore, if f(u) contains only the first and the last types of nonlinear terms, then the Cauchy problem is well-posed for s > −(m/2+3/4). The proof is based on bilinear estimates in Xs,b spaces.
|
Journal Title |
Memoirs of the Graduate School of Science and Engineering, Shimane University. Series B, Mathematics
|
Volume | 57
|
Start Page | 27
|
End Page | 38
|
ISSN | 1342-7121
|
Published Date | 2024
|
DOI(SelfDOI) | |
Publisher | 総合理工学部
|
Publisher Aalternative | The Interdisciplinary Graduate School of Science and Engineering
|
NII Type |
Departmental Bulletin Paper
|
Format |
PDF
|
Text Version |
出版社版
|
OAI-PMH Set |
Faculty of Science and Engineering
|
他の一覧 |