| ファイル情報(添付) | |
| タイトル |
Space of Geodesics in Hyperbolic Spaces and Lorentz Numbers
|
| 著者 | |
| 収録物名 |
島根大学総合理工学部紀要. シリーズB
|
| 巻 | 36 |
| 開始ページ | 61 |
| 終了ページ | 67 |
| 収録物識別子 |
ISSN 13427121
|
| 内容記述 |
抄録・要旨
In this note, we will study about the space of oriented geodesics in hyperbolic spaces H^n. It is well-known that the space of oriented geodesics (i.e., oriented great circles) in spheres S^n is identified with oriented real 2-plane Grassmannian G^2(R^<n+1>) and complex quadric Q^n. We will show that the space of oriented geodesics in H^n is also given similarly by using Lorentz numbers. Oriented real 2-plane Grassmannian plays important roles among differential geometry of submanifolds. For example, let f be an immersion from a Riemann surface ∑ to the Euclidean space R^<n+1>. Then the Gauss map γ from ∑ to the Grassmannian G^2(R^<n+1>) of oriented 2-plane in R^<n+1> of f is anti-holomorphic (resp. holomorphic) if and only if the immersion f is minimal (resp. totally umbilical). Here we will remark that similar results valid for timelike surfaces in Lorentz space R^<n+1> without proof.
|
| 言語 |
英語
|
| 資源タイプ | 紀要論文 |
| 出版者 |
島根大学総合理工学部
|
| 発行日 | 2003-03 |
| 出版タイプ | Version of Record(出版社版。早期公開を含む) |
| アクセス権 | オープンアクセス |
| 関連情報 |
[NCID]
AA11157123
|