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In this note, we will study about the space of oriented geodesics in hyperbolic
spaces Hn. It is well-known that the space of oriented geodesics (i.e., oriented
great circles) in spheres Sn is identified with oriented real 2-plane Grassmannian

G̃2(Rn+1) and complex quadric Qn. We will show that the space of oriented
geodesics in Hn is also given similarly by using Lorentz numbers. Oriented real
2-plane Grassmannian plays important roles among differential geometry of sub-
manifolds. For example, let f be an immersion from a Riemann surface Σ to
the Euclidean space Rn+1. Then the Gauss map γ from Σ to the Grassmannian

G̃2(Rn+1) of oriented 2-plane in Rn+1 of f is anti-holomorphic (resp. holomorphic)
if and only if the immersion f is minimal (resp. totally umbilical). Here we will re-
mark that similar results valid for timelike surfaces in Lorentz space Rn+1

1 without
proof.

1. Complex numbers and Lorentz numbers

According to [8] (section 4), we review the complex numbers C and the Lorentz
numbers L. Let R(2, 0) be the vector space R2 with an inner product ε2,0(x, y) =
x1y1 + x2y2. The square norm associated with ε2,0 is defined by ‖x‖ = ε2,0(x, x).
Then the complex numbers C are defined to be R(2, 0) with the multiplication,
given by (a, b)(c, d) := (ac − bd, ad + bc). Let 1 := (1, 0) and i := (0, 1), so that
(a, b) = a+bi and i2 = −1. Conjugation is defined by z̄ = a−ib for z = a+ib. Note
that zw = z̄w̄, zz̄ = ‖z‖, and hence ‖zw‖ = ‖z‖‖w‖. If z 6= 0, then z−1 = z̄/‖z‖,
so that C is a (commutative) field.

Let eiθ = cos θ + i sin θ denote a point on the unit circle and note that Meiθ ,
multiplication by eiθ, is an orthogonal transformation since ‖eiθ‖ = 1. As a 2 × 2
real matrix,

Meiθ =

(
cos θ − sin θ
sin θ cos θ

)
,

so that Meiθ ∈ SO(2). Since Meiθeiψ = Mei(θ+ψ) , the map θ 7→ Meiθ induces the
group isomorphism, R/2πZ ∼= SO(2).
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Let R(1, 1) be the vector space R2 with an inner product ε1,1(x, y) = x1y1−x2y2.
The square norm associated with ε1,1 is defined by ‖x‖ = ε1,1(x, x). Then the
Lorentz numbers L are defined to be R(1, 1) with the multiplication, given by
(a, b)(c, d) := (ac+bd, ad+bc). Let 1 := (1, 0) and τ := (0, 1), so that (a, b) = a+bτ
and τ 2 = 1. Conjugation is defined by z̄ = a − bτ for z = a + bτ . Note that
zw = z̄w̄, zz̄ = ‖z‖, and hence ‖zw‖ = ‖z‖‖w‖. Thus if ‖z‖ 6= 0 (z non null), then
z−1 = z̄/‖z‖ exists, while for ‖z‖ = 0 (z null) z can not have an inverse.

Let eτθ = cosh θ+τ sinh θ (calculate the formal power series for eτθ to see that this
definition is appropriate). Note that Meτθ , multiplication by eiθ, is an orthogonal
transformation since ‖eτθ‖ = 1. As a 2× 2 real matrix,

Meτθ =

(
cosh θ sinh θ
sinh θ cosh θ

)
,

so that det Meτθ = 1. Define a timelike vector z = a + bτ to be future timelike if
b > 0. Since Meτθ = sinh θ + τ cosh θ, multiplication by eτθ preserves the futurelike
time cone. Thus, Meτθ ∈ SO+(1, 1) (the connected component of the identity of
the Lorentz group O(1, 1)). In fact, since Meτθeτψ = Meτ(θ+ψ) , the map θ 7→ Meτθ

determines the group isomorphism, R ∼= SO+(1, 1).

2. Space of oriented geodesics in spheres

In this section we recall (cf. [9] and [11]) that space of oriented geodesics (i.e.,
oriented great circles) in the unit sphere Sn in Rn+1 is identified with complex
quadric Qn−1 in complex projective space CPn and oriented 2-plane Grassmannian

G̃2(Rn+1). Let Rn+1 be the Euclidean (n + 1)-space, that is the set of all (n + 1)-
tuples p = (p1, · · · , pn+1), with the dot product p · q =

∑
pjqj. Then Sn = {p ∈

Rn+1| p·p = 1} is the unit sphere. The geodesic γ in Sn of unit speed with γ(0) = p
and γ′(0) = x (‖x‖ = 1) is written as γ(θ) = cos θp + sin θx.

Let

(1) V n+1
2 = {(e1, e2) ∈ Rn+1 × Rn+1 | eα · eβ = δαβ (α, β = 1, 2)}

be a Stiefel manifold of orthonormal 2-vectors in Rn+1. As a homogeneous space,
V n+1

2 = SO(n + 1)/SO(n− 1) and dimR V n+1
2 = 2n− 1. We consider the action of

SO(2) on V n+1
2 as

(2) (e1, e2)

(
cos θ − sin θ
sin θ cos θ

)
= (cos θe1 + sin θe2,− sin θe1 + cos θe2).

Then each orbit {(cos θe1 + sin θe2,− sin θe1 + cos θe2)|θ ∈ R} of the action (2) is
identified with a pair (γ, γ′) of unit speed geodesic γ on Sn and its unit tangent
vector field γ′ with γ(0) = e1 and γ′(0) = e2. Note that orbit space of the action
(2) is nothing but the oriented 2-plane Grassmannian

G̃2(Rn+1) = {span{e1, e2}| eα · eβ = δαβ (α, β = 1, 2)}.
Then V n+1

2 is a principal fiber bundle over G̃2(Rn+1) with structure group S1 and

projection map π : V n+1
2 → G̃2(Rn+1) defined by

π((e1, e2)) = span{e1, e2}.
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The tangent space T(e1,e2)V
n+1
2 is

R(−e2, e1)⊕ {(x1,x2) ∈ Rn+1 × Rn+1 | x1,x2 ⊥ span{e1, e2}}.
The inner product on Rn+1 × Rn+1 defined by

〈(x1,x2), (y1,y2)〉 = 〈x1,y1〉+ 〈x2,y2〉
for (x1,x2), (y1,y2) ∈ Rn+1 × Rn+1

induces a Riemannian metric g̃ on V n+1
2 . Since g̃ on V n+1

2 is invariant by the

structure group, we may define a Riemannian metric g on G̃2(Rn+1) such that π is
a Riemannian submersion.

The distribution given by

(3) T ′
(e1,e2)(V

n+1
2 ) = {(x1,x2) ∈ T(e1,e2)(V

n+1
2 ) | x1,x2 ⊥ span{(e1, e2)}}.

defines a connection in the principal fiber bundle V n+1
2 (G̃2(Rn+1), S1), because

T ′
(e1,e2) is complementary to the subspace R(−e2, e1) tangent to the fiber through

(e1, e2), and invariant under the S1-action. The natural projection π : V n+1
2 →

G̃2(Rn+1) induces a linear isomorphism of T ′
(e1,e2)(V

n+1
2 ) onto Tp(G̃2(Rn+1)), where

π((e1, e2)) = p. The complex structure J̃ on T ′
(e1,e2)(V

n+1
2 ) defined by

(4) (x1,x2) 7→ (−x2,x1)

induces a canonical complex structure J on G̃2(Rn+1) through dπ. Then it can be
seen that

J2 = −1, 〈JX1, X2〉+ 〈X1, JX2〉 = 0, ∇J = 0,

where ∇ denotes the Levi-Civita connection of (G̃2(Rn+1), g), so G̃2(Rn+1) is a
Kähler manifold.

Let Cn+1 = {z = x+ iy|x,y ∈ Rn+1} be the complex Euclidean space, and define
the dot product on Cn+1 as

(x + iy) · (u + iv) = (x · u− y · v) + i(x · v + y · u),

where x,y,u,v ∈ Rn+1. The submanifold V 2n−1
C of Cn+1 is defined by

(5) V 2n−1
C = {z ∈ Cn+1| z · z̄ = 2, z · z = 0},

where z̄ = x− iy for z = x + iy ∈ Cn+1. Then the map

V n+1
2 3 (e1, e2) 7→ e1 + ie2 ∈ V 2n−1

C

is a diffeomorphism. Moreover V 2n−1
C is a submanifold of S2n+1(

√
2) with radius√

2 and is invariant under the action of unit complex numbers {eiθ} on S2n+1(
√

2)
defined by z 7→ eiθz. Hence if we denote π : S2n+1(

√
2) → CPn the Hopf fibration,

then Qn−1 := π(V 2n−1
C ) is nothing but the complex quadric in CPn defined by the
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quadratic equation z2
0 + · · · + z2

n = 0, and is diffeomorphic to G̃2(Rn+1) such that
the following diagram is commutative:

V n+1
2

∼−−−→ V 2n−1
C

π

y
yπ

G̃2(Rm+1)
∼−−−→ Qn−1.

3. Space of geodesics in hyperbolic spaces

In this section, we will see that space of oriented geodesics in the hyperbolic space
Hn is identified with some indefinite Grassmannian and given by using Lorentz
numbers. Let Rn+1

1 be the Minkowski (n + 1)-space with the scalar product p · q =
−p0q0 +

∑n
j=1 pjqj of signature (1, n). Then

Hn = {p = (p0, p1, . . . , pn) ∈ Rn+1
1 | p · p = −1, p0 > 0}

is the hyperbolic space with constant sectional curvature −1 . The tangent space
Tp(Hn) at p ∈ Hn is

TpHn = {X ∈ Rn+1
1 | X · p = 0}.

Then the geodesic γ of unit speed in Hn with γ(0) = p ∈ Hn and γ′(0) = X ∈
Te(Hn) (‖X‖ = 1) is written as

γ(t) = cosh tp + sinh tX.

Let

V n+1
1,1 = {(e, f) | e = (e0, e1, . . . , en), f ∈ Rn+1

1 , e0 > 0,

e · e = −1, f · f = 1, e · f = 0}.
Note that as a homogeneous space, V n+1

1,1 = SO+(1, n)/SO(n−1) and dimR V n+1
1,1 =

2n − 1, where SO+(1, n) is the proper Lorentz group (cf. [12]). We consider the
action of SO+(1, 1) on V n+1

1,1 as

(6) (e, f)

(
cosh θ sinh θ
sinh θ cosh θ

)
= (cosh θe + sinh θf , sinh θe + cosh θf).

Then each orbit {(cosh θe + sinh θf , sinh θe + cosh θf)|θ ∈ R} of the action (6) is
identified with a pair (γ, γ′) of unit speed geodesic γ on Hn and its unit tangent
vector field γ′ with γ(0) = e and γ′(0) = f . The orbit space of the above action
is identified with the space of oriented geodesics in Hn. We also identify [(e, f)] ∈
V n+1

1,1 /SO+(1, 1) with the oriented 2-plane with a signature (1, 1) in Rn+1
1 spanned

by eand f . Hence the space of oriented geodesics in Hn is the oriented indefinite

2-plane Grassmannian G̃+
1,1(Rn+1

1 ).

Let π : V n+1
1,1 → G+

1,1(1, n) be the natural projection. Tangent space of V n+1
1,1 at

the point (e, f) is

T(e,f)V
n+1
1,1 = {(x,y) | x, y ∈ Rn+1

1 , x · e = y · f = x · f + e · y = 0}.
Put

T ′
(e,f) = {(x,y) ∈ T(e,f)V

n+1
1,1 | x · f = y · e}.
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Then the distribution T ′
(e,f) gives a connection on the principal fiber bundle

V n+1
1,1 (G+

1,1(1, n), SO+(1, 1)), and the projection π induces the linear isomorphism

π∗ : T ′
(e,f) → Tπ(e,f)G

+
1,1(1, n). For tangent vectors X1, X2 at p ∈ G+

1,1(1, n) and their

horizontal lifts (x1,y1), (x2,y2) ∈ T(e,f)V
n+1
1,1 with π(e, f) = p, we put

(7) 〈X1, X2〉 = −x1 · x2 + y1 · y2.

Then 〈 , 〉 gives a semi-Riemannian metric g of signature (n−1, n−1) on G+
1,1(1, n).

Note that these indefinite Grassmannian and semi-Riemannian metric are con-
structed by Ejiri [7].

Let P : TpG
+
1,1(1, n) → TpG

+
1,1(1, n) be the linear endomorphism defined by

Pπ∗(x,y) = π∗(y,x),(8)

(x,y) ∈ T ′
(e,f), π(e, f) = p.

Then

P 2 = 1,(9)

dimR{X|PX = ±X} = dimRM/2,(10)

〈PX1, X2〉+ 〈X1, PX2〉 = 0,(11)

∇P = 0,(12)

where ∇ denotes the Levi-Civita connection of (G+
1,1(1, n), g) .

Definition 3.1. [4, 10] A tensor field P of type (1, 1) on a differentiable manifold
M is called almost product structure (resp. almost para-complex structure) if (9)
(resp. (9,10)) valid. A tensor field P of type (1, 1) on a semi-Riemannian manifold
(M, 〈 , 〉,∇) is called almost para-Hermitian structure (resp. para-Kähler structure)
if (9,10,11) (resp. (9,10,11,12)) hold.

Note that on a para-Kähler manifold (M, P, 〈 , 〉), a 2-form defined by ω(X, Y ) =
〈PX, Y 〉 gives a symplectic form. (G+

1,1(1, n), P, 〈 , 〉) is a para-Hermitian symmet-
ric space [4, 10], especially is a symplectic affine symmetric space.

Proposition 3.2. For an oriented 2-dimensional semi-Riemannian manifold (Σ2
1, ·)

with signature (1, 1), there is a canonical para-Kähler structure P on Σ2
1.

In fact, let (u, v) be an isothermal coordinate, which is compatible with the
orientation of Σ2

1, i.e., ∂u · ∂u + ∂v · ∂v = ∂u · ∂v = 0 and ∂u · ∂u < 0. Then the
canonical para-Kähler structure on Σ2

1 is defined by

(13) P∂u = ∂v, P∂v = ∂u.

Let Ln+1 = {z = x + τy|x,y ∈ Rn+1} be the space of Lorentz numbers, and
define the dot product on Ln+1 as

(x + τy) · (u + τv) = (x · u + y · v) + τ(x · v + y · u),

where x,y,u,v ∈ Rn+1. Then Ln+1 is naturally identified with the semi-Euclidean
space R2n+2

n+1 (cf. [12], pp.55) with the scalar product

〈x + τy,u + τv〉 = Re((x + τy) · (u− τv)).
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The submanifold V 2n−1
L of Ln+1 is defined by

(14) V 2n−1
L = {z ∈ Ln+1| z · z̄ = −2, z · z = 0},

where z̄ = x− τy for z = x + τy ∈ Ln+1. Then the map

V n+1
1,1 3 (e, f) 7→ e + τ f ∈ V 2n−1

L

is a diffeomorphism. Moreover V 2n−1
L is a submanifold of the pseudohyperbolic space

H2n+1
n (

√
2) (cf. [12], pp.110) with radius

√
2 and is invariant under the action of

unit Lorentz numbers {eτθ} on H2n+1
n (

√
2) defined by z 7→ eτθz. From these facts,

we may consider the space of oriented geodesics in Hn as “Lorentz quadric”.

4. Gauss maps for timelike surfaces in the Lorentz spaces

Let ϕ : Σ2
1 → Rn+1

1 be an immersion from an oriented timelike surface Σ2
1 to the

Lorentz space Rn+1
1 . Then its Gauss map τ is defined as

τ : Σ2
1 → G+

1,1(1, n), τ(p) = ϕ∗(TpΣ
2
1).

Proposition 4.1. (i) τ is conformal ⇔ ϕ is pseudo umbilical.
(ii) τ is harmonic ⇔ mean curvature vector of ϕ is parallel with respect to the

normal connection.

With respect to the almost product structure P (resp. P̄ ) on Σ2
1 (resp. G+

1,1(1, n))
defined by (13) (resp. (8)), the following hold:

Proposition 4.2. (i) τ∗ ◦ P = P̄ ◦ τ∗ ⇔ the mean curvature vector of ϕ van-
ishes.

(ii) τ∗ ◦ P = −P̄ ◦ τ∗ ⇔ ϕ is totally umbilical.
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