On Inversible Semigroups

島根大学論集. 自然科学 6 巻 8-20 頁 1956-02-21 発行
アクセス数 : 1206
ダウンロード数 : 56

今月のアクセス数 : 95
今月のダウンロード数 : 0
ファイル情報(添付)
b012006b002.pdf 1.49 MB エンバーゴ : 2003-11-13
タイトル
On Inversible Semigroups
著者
山田 深雪
収録物名
島根大学論集. 自然科学
6
開始ページ 8
終了ページ 20
収録物識別子
ISSN 04886542
内容記述
その他
Let S be a semigroup, and let I be the totality of all idempotents of S.
Then S is said to be inversible if S satisfies the following two conditions ; ( 1 ) to each a∈S there exists a^[*] ∈S such that aa^[*] = a^[*]a∈ I ; (2) I is a subsemigroup of S. For instante, idempotent semigroups ( accordingly completely non-commutative semigorups) [3] [4], left ( right ) regular and right (left ) simple semigroups [2] and commutative inverse semigrourps [5] are clearly inversible semigroups.
T. Tamura showed that if I is corsisting of only one idempotent ( he defined such a semigroup to be an 'unipotent semigroup') S has the minimcal two sided ideal K ( Suschkewitsch kernel [7] )which is the same as the maximal subgroup of S. Moreover, under the same restriction he points out that the Rees factor semigroup Z= S/K [6] is a zero-semigroup and that the structure of S is completely determined by K,Z and a ramified homomorphism f of Z into K [8] .
The main purpose of this paper is to show, among other things, that the above-mentioned Tamura's results are extended to an inversible semigroup whose idempotents are primitive.
Throughout the whole paper the operation +^^[・] ([・]∑) will denote the class sum, i.e. , disjoint sum of sets.
言語
英語
資源タイプ 紀要論文
出版者
島根大学
Shimane University
発行日 1956-02-21
アクセス権 オープンアクセス
関連情報
[NCID] AN0010814X