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Let S be a semigroup, and let I be the totality of all idempotents of S,

Then S is said to be invérsible if S satisfies the following two conditions ; (1) to each acS
there exists a*€S sush that aa*=a*ac [ ; (2) I is a subsemigroup of S. For instance,
idempotent semigroups ( accordingly completely non-commuiative semigorups) [3] [47, left
(right) regular and right (left) simple semigroups [2] and ccmmutative inverse semigroups
[5] are clearly inversible semigroups,

T. Tamura showed that if I is consisting of only cne idempotent (he defined such a
semigroup to be an ‘unipotent semigroup’) S has the minimal two sided ideal K (Suschke-
witsch kernel [7] Jwhich is tke same as the meximal subgroup cf S, Morecver, vnder

the Rees factor semigroup Z=S/K [67] is a zero-se-

completely determined by K, Z and a remified hom-

the same restriction he points out that
migroup and that the structure of S is
omorphism f of Z into K [8].
The main purpose of this paper is to show, amorg other things, that the above-mentioned
Tamura’s results are extended to an inversible semigroup whese idempotents are primitive,
Throughout the whole paper the operation —|: (X)) will denote the class sum, i.e, , dis-
joint sum of sets,
8§ L. i-components and structure of inversivie semigroups.
Let G be a semigroup containing at least one idempetert. For any idempctert e of G,
by the ¢ i-component of G af ¢’ we shall mean the greatest subset C(e) of G such that to
each element x of C( e) there exists x*€ G which satisfies the relation sx*=x*x=e,
In this paragraph S will always denote an irversible semigroup, and I will dencte the tot-
ality of all idempotents of S, N(e) will always denote the i-ccmponent of S at e,
Lemma 1.1, Every N (e) is an inversible subsemigroup of S.
Proof, Let a, b be any two elements of IV (e) . Then there exist a¥, b¥*cS, such that
aa* =a*a=e and bb*=b*b=e¢ rcspectively, If we put c=b*a*, the following relations hold
; (ab)e= abb*a*==agea*=aa*aa*=we, c(ab) ==b*a*ab=b*eb=>b*bb*b=e,
Hence abeN (e) . This implies IV (e) to be a subsem’gioup of S. Since N (e) is clearly

inversible, we obtain this lemma,
Lemma 1.2, If e is an idemporent of S, then e ccmmutes with any element of N(e).

Accordingly the relation eN (e)= N(e)e holds,
Proof, T'ake up any element x& N (e). There exists ¥*€S such that swk=x*x=c,

Hence ex = (wx™®) x=x (x*x) =we,



Lemma 1.3, If e is an idempoteni of S, then eN(e)is the greatest subgroup of N(e) as
well as an ideal of N(e). Accordingly N(e) is a subhomogroup [k of S.

Proof, 1t is obvious that e is the unit of eM(e). Let x be any element of N(e). Then
there exists x*¥c /N (e) such that xx¥*=x*xy=e, ex* is clearly an element of eN(e).
Therefore the element ex* becomes the inverse element of ex in eN(¢), since the relations

exen*=e , ex*ex==e hold, Hence e/(e) is a subgroup of N(e), It is easy to see that’
elN(e) becomes the greatest subgroup and an ideal of N(e), and so we save the trouble to
prove it,

Remark, [sk7] . A homogroup is 2 semigroup having an ideal which is also a subgroup .
It is obvious that for any hemogroup such an ideal is uniquely determined. By a¢ group
ideal’ of a homogroup we shall mean an ideal which is also a subgroup. Hence eMe) is
the group ideal of N(e).

Let G be a semigroup containing at least one idempotent, and let I; be the totality of
all idempotents of G. An idempotent e of G is said to be prmitive if it satisfies the rel-
ation elge={e} [3].

Theorem 1. 1. Any homogroup has at most one primitive idempotent. pforeover if a ho-
mogroup H has a primitive idempoient e, then e is the unit of the gvoup ideal of H,

Proof. Let K, e be the group ideal of H and the unit of K respectively. If e/ is any
primitive idempotent of H , then the relation e’ee’ = e/ follows frcm the definition of the
primitivity, Accordingly e =e' holds, since efee! is contained in K and is an idempotent
" of H. .

Lemma 1.4. For any N(e), e is a primitive idempotent of N(e)itself,

“Preof, Let e/ be any idempotent of N (e). Then ee'=e, since ee! is an idempotent
and is contained in the subgroup eN (e) of N(e). Hence we have ecle=e,

"Lemma 1.3 and Lemma 1.4 imply ;

Theorem 1.2, Every N (e) is an inversible subhomogroup , which has one and only one
primitive idempotent of N(e) itself.

Lemma 1.5, The group ideals of N(e,), N(e:) are mutually disjoint if e, and e, are
differvent two idempotents of S,

Preof. If e;N(e:) and e:N(ez) contain x in ccrrmon, then there exist 1wo elements a*E
e:N (e: and x:% € e, N(ep) such that xx/* = w/*x—e, and wws*=ux,*x=¢, respectively.
Hence the following relations hold successively ;

e; = X¥x = x¥xe: = eze,

e2 = Xxo¥ = ens® = e,e9,



e, == es,
This is contrary to our assumption,
By Lemima 1.5 and Theorem 1. 2, we get the following
Theorem 1.3, S is represented as a sum of inversible subhomogroups {Su}o such that
(1) every Sy has one and only one primitive idemporent ,
(2) the group ideals of {Su}y are mwually disjoint,

Moreover we can prove the next interesting théorem,

Theorem 1.4. S is uniquely decomposed into the class sum of murually disjoint subgroups
if and only if the following relation is solvable for any given a of S.

(R) axa = a and ax=xacl,

Proof. To prove the first half of this theorem, we assume that S has a solution of
(R) for any given a of S. We shall show, first of all, that any element of S is contained
in the group ideal of some i-component of S, Take up any element ac S,

By the assumption, there exists x such that axa=a and ax=wxacl If we put ¢=ax=wxa,

then a and x are elements of N(e). Hence eacN(e), and hence a€N(e), since ea=a
holds, This shows ¢ to be an element of the group ideal of N (e). Accordingly it follo-
ws from Lemma 1.5 that S is decomposed into the class sum of mutually disioint subgr-

oups; S=oY eN (e). We prove next the uniqueness of such decompositions, Assume that
€6 I

there exists a decomposition ¢ , S=e3 %, of S into the class sum of mutually disioint
L2

subgroups 9. Then each 9f, contains clearly one and only one idempotent of S. Let %(e)
=y if 9, contains an idempotent e. Then S is represented as follows ; S= ‘-’5 (e If
“x is an element of % (e), there exists %9 (e) such that xx*= x*x=e, Hence xC
eN(e), and therefore 9 (é) CeN (e). This implies eg,"l 23 (e)z-é‘l eN (e). The latter half
of this theorem is cbvious by the properties of g oups.

Corellary 1.1 If the velaticn ax=xacl has a unique solution for any given element a

of S, then S is uniquely decomposcd into the class sum of mutually disjoint subgroups, and

it is the decomposition into the class sum of all i-components of S.

Proof . Take vp any element a of §. Then by the assumption, there exists one and
only one x€.S such that ax=xa€/l. Let e=ax=xa., Since eax=xea=e, the relation ea=
a follows from the uniqueness of an element v such that yx=xycl.

Hence N(e)=eN(e¢) and awa=a, Therefore by Lemma 1.5 and Theorem 1.4, we have our
corollary,

Corollary 1.2, If S is left (vight) cancellable, then S is uniquely decomposed into the

class sum of murually disjoint subgroups, and it is the decomposition into the class sum of
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all i-components of S.

Proof, We may prove this corollary only when S is left cancellable, because in the other
case we can prove it by the same process. Let S be left cancellable, Take up any element
ac S, and assume that there exist two elements x, and x; which satisfy the relations ax,=
x:ac I and axs=wx:a€ I respectively., We set e: = ax; and e; = ax;, 'Then the following
relations follow successively ; e;xa=e;, xe,=e;%;, X,e;a=e;=x,a and e;a=a. Since ax;=
x,a,=e; implies e;a=ae,, the relation ae;=e,a=a is concluded, Similarly we have ae;=esa=
a by the same procedure, Thus ae;=aes, and consequently e;=es, ¥,=x, by the left cancella-
bility of S. This means that the proof of our corollary is reduced to one of corollary 1.1,

Remark. }f S satisfies the condition of Corollary 1.1 or Corollary 1,2, then S is, in
effect, isomorphic to the direct product [11] 4" XL X R of a group 9%, a left singular semi-
group L [27] and a right singular semigroup R [2] (see the paragraph 3) . Hereafter by
a ¢ quasi-gr-group ’ we shall mean a semigroup which is isomorphic to the direct product
% xLxR of a group %, a left singular semigroup L and a right singular semigroup R 97 .

§ 2. Srecial middle unitary inversible semigroups.

If an element a of a semigroup G satisfies the relation xay=xy for any elements x, yE
G, then a is said to be a middle unit of G. By a‘ middle unitary semigroup’ we shall
mean a semigroup having at least one middle unit, and especially a‘ special middle unitary
semigroup ’ will mean a middle unitary semigroup whose idempotents are middle units [107] .
Moreover by a* special middle unitary inversible semigroup’ we shall mean a special midde
unitary semigroup which is inversible. Of course, middle units are rot necessarily idempot-
ents even in a special middle unitary inversible semigroup. In this paragraph we shall det-
ermine the structure of special middle unitary inversible semigroups. To save repetition, we

shall adhere throughout this paragraph to the following notations. V will denote a special

middle unitary inversible semigroup. I will denote the totality of all idempotents of V.
M will denote the totality of all middle urits of V. I;- and A/ are obviously subsemigroups
of V, and I} is contained in Af by the above definitions,

Lemma 2.1, If the relation xa = ax€M has two solutions x;, %y in V for given element

a of V, then x,a=wx:a holds.

Proof, If we set e,=x,a=ax, and.ezz A%, =X, then exy;=x;a%,=x¢; and successively
AxX1= Qexx; = axe1=X:08; , A%;=x:0 (@) = X2 (AX1) Q= X202 = A2,

We define an equivalence relation. between elements @ and b of V as follows ;

a~b if and only if there exists an element xSV such that axEAf and bxEM
Then the following relations hold ;

1) a~a for every gV,
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(2) a~b implies b~a.
3 a~b, b~c imply a~ec.
@) a~b, c~d imply ac~bd,
Let £ be the facior semigroup of V mod (~) and let @ be the residue class of V which
contains the element @. Then we have
Lemma 2.2, 2 is a group, and its wnit class concurves with A,
Proof. It is obvious that the relation ¢ = M holds for any element e of M. Let e be any element

of M and let X be any element of . Then Zox =en and X o€ = e hold, On the other

hand, there exists x% such that xa* =a*xE [, CAM. Hence, it follows that xx*E AL, ex.x*€

M and xe - x*& M. Consequently Cen—ex=x and yee=xe=un , which imply ¢ to be the

unit element of £. Moreover we have meat = xy* :=(31 =¢ :_z = ?"o_x, ‘where e; denotes
the element xx* Therefore there exists an inverse element for any element of £, This
completes the proof of our lemma,

Since I is the totality of all idempotent middle units of V, it is isomorphic to the direct-

product LX R of a left singular semigroup L and a right singular semigroup R [9] . Accor-

dingly there exists an isomorphism & of I;- onto LXR ;

Ir —% _ ILxR (AD).

On. the other hand the mapping ¢ , which is the correspondence ¢ —> (a, aa*), isa
homomorphism, of V onto £x I (where @* is an element of V such that aa* = a*acM.

Such an elemeént aag* is uniquely determined by Lemma 2, 1) ;
V__ ¢  @xlir (B.

From (A) and (B) , we have V ¢  QXLXR.

If we denote by V(g ,7) the inverse image of (g, 1,7) ELXLXR by &¢p,
Vigstnr) V(gsyiars) i8 a set consisting of only cne element for any two elements
Cenlnr)s (gnlar) of @XLXR.
Summarizing the above mentioned results, we obiain, ;
Lemma 2. 3. There exists a quasi-Sx<-group ' and a collection {Vy | acl} of subsets of
V which satisfy the following conditions ;
C.HvV 2"‘22 Ve ,
(C.2) for a;zy B, el ViVy is a set consisting of only one element of V.
Proof, Let '=QxXLxR 2nd let Ve be the inverse image of a&] by &p. Then this

lemma follows from: the above observations,

Now we prove the most important assertion ;
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Theorem 2, 1. There exist a quasi -9 group I', a collection {Vy | a €'} of subsets of

V and a subset {ps | acI'} of V, such thar

(C.H V= EPVa )

o€ [
(C.2) pa € Vo for any acl' ,
(C.3) VgV, = pg, for any B, vel.

Proof.Let '=2xLx R, let V,be the inverse image of acI” by &g, and let p (g 1,7
=Vigt,r) Vig-il» Vgl to each elemeint (g L) €'. 'Then the following

relation holds for any two elements (g, (,#), (gt 7Y €I ;

Doty 0 ) ={Vigt,r Vig-tt,v) Vg1, } {Vig l,rd) Vig-1 o Vg, Iy}
= Vighn {Vaihn Vighn ) { Vgt Vig=40m } Vg, 1) [a]
= Vi Vit
= Vign (Vi V @-1nim) {Vignird Vighr )} Vigrm [a]
= Vg, 1,+" Vfg'—lg—l, Ly Vgt v

= p(gd" ")

Hence, by Lemma 2. 3 this completes the proof of our theorem,
Remarks, [a]) . Vig-44m Vg hry, Vg i, v Vig-u1,, Vig,br) Vg4
and V(g-1,1,+") Vg 1,#) are consisting of only one middle unit, respectively (see the

mapping £¢).

[6]. Cerversely, it is easy to see that any semigreup satisfying the conditions ( C; 1,
(C.2), (C.3) of Theorem 2, 1 becmes a special middle unitary inversible semig oup, Since
the set {po | acl'} of Theorem 2.1 is clearly a quasi-Zz—group, V is nothing but a quasi-
Sr-group in its essence,

Mo. eover, we have

Theorem 2, 2 If V is simple [12], then V is a quasi-2:-group.

Proof. Let P be the set {py | acl'} of Theorem 2,1, Then P is clearly the minimal
ideal of V (Suschkewitsch kernel), Since V is simple. we have the relation P=V, This

means V to be a quasi-Ze-group.
& 3. Kernels of inversible semigroups with primitive idempotents.

If an inversible semigroup has at least one primitive idempotent, it has also a minimal
ideal (Suschkewitsch kernel). In paragraphs 3, 4, we shall investigate the stiucture of
inversible semigroups having at least one primitive idempotent, Hereafter © will always

derote an inversible semigroup with primitive idempotents and & will denoie the kernel
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of &, Moreover  and P will always denote the totality of all idempotents of & and the
totality of all primitive idempotents of S respectivel y,

By the definitons of the inversibility and the primitivity it is easy to see that § and P are
subsemigroups of &, and that P becomes an ideal of  (see [3] ).

Theorem 3,1.& has a kernel, which contains all primitive idemporents of S,

Proof. Let E be any ideal of &, We shall show first that E contains the set P. Take up
any ¥€E. Then there exists 4¥€& such that ax* = x*xC §. If we put e = xx%, e is an
idempotent contained in E. Hence any primitive idempotent p of & is contained in E,
since E is an ideal of & and since the relation pep = p follows from the definition of the
primitivity, This implies PCFE. Let Q E, be the intersection of all ideals E, of &, Since
the relation QED‘D‘B follows frem the above relation, DEw is not empty, and hence I'D} E,
becomes the kernel of &,

Lemma 3.1. R is formularized as follows ;

K= JeSe

€iyej€ B
Proof. Ye&e,CR is obvious by the relation LCR. Accordingly we may show the con-

verse of tp}zgeilation.. Take an element e, of P. Then we get the relation Se,€E=§, since
©e;& is an ideal of © such that ©¢,€CR. Let xe¢;y be any element of SerS., Then there
exist two elements x*, y* of & such that
(xer)x* = x* (xez) € .«
(ery)yv* = y* () € -
Let (xex) x*==¢ and let (e¢v)y*=¢'. Since xe.€ C (&) and e, vEC(e), where C(e) and
C (e!) denote the i~components of & at ¢ and ¢’ respectively, the relations (xe;) e=e (xe;)
and (ery)e'=e¢!(e;y) hold, On the other hand, x* (xe,) e, = ee.. Hence x* (xe;) = ee*,
which implies e=¢¢, €.  Similarly we have the relation e/€,
Therefore
xew = xewery = (xe;) (eel) (ery) = (xex) ee! (€)= e (xer) (exy) e
=e¢(xery) e 642; Ecgé:@'ej )
and this implies Rz@ek@cigs@ﬁ.
Lemma 3.2. P is formularized as follows ;
=3 NK.
Proof. PCINR is obvious by the relation PR, To show the converse of this relat—
ion, take up any element ¢ of (K. Since e‘e_i,%;gg(zei, there exist three elements ¢;, &, ¢; such
that ¢,€%, ¢,€EP, ¥ES and exe;—~e. If ¢ is an element of , then e¢;e'e/~e,e; holds. For

the following relations hold successively ;

e;=e¢;(ee;) e —=eew;,.
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e;el (ee;e:) = (e;e) (¢;e:),
eee;=e,e;
Since (ewve;) e (eixe;) = (eixe;)*, we have the relation ¢e'e=e. This implies ecP, and
hence UKD,

Lemma 3.3, & is aqn inversible subsemigroup of ©.

Proof, Let x be any elemnt of & Then there exists x*€ & such that ax* = x*xc G.
We put e=xx*. Sirce ¢ is an idempotent of &, e€P follows frem Lemma 3,2, Let x%%
=e¢x*e, Then x** is an element of & such that xx**=x**ycP. Thus & becomes an
invresible subsemigroup of &,

Lemma 3.4, Every primitive idempotent is @ middle wunit of .

Proof. e;e,e,=¢:¢; holds for any elements e;, ¢;, e of P as we see in the proof of Lemma

3.2. Hence this lemma is obvious by Lemma 3. 1.

Since the kernel of a semigroup is simple, above three Lemmas 3.2, 3.3 and 3.4 can be
summed up as the following v

Theorem 3,2. ® is @ simple sud special middle wunitary inversible semigroup. Accord—
ingly & is a quasi-2--group.

Corollary 3. 1. If & is a commautarive semigroup , then & is a subgroup of &, According-
ly & is a homogroup.

Proof. According to Theorem 2.2, & is a quasi-ge—group. On the other hand, P is a
commtative subsemigroup of  such that PR, Hence it is easy to see that P is consis—
ting of orly one element, This means & to be a group, since P is the totality of all ide-
mpotents of &,

Corollary 3.2, Let S be an inversible semigroup having ar most fin-ité idempotents, Then
S has at least one primitive idempotent, and thevefore S has a kernel which is a simple
and special middle unitary inversible subsemigyop.,

Proof. Let I be the totality of all idempotents of S. By the assumption [ is g finitev
subsemigroup of S. We show first that pIp=qlq implies p=q for any two elements p, ¢
of 1. Assume that pIp=glq. 'Then the following relations hold successively ; p=pgp, g=
pap, pg=qpg, pa=pap and p=gpq-=pg=7pgp=g. Thus plp=qlq implies p=g. Now since
the colleston {pfp | pEI} of subsets pIp of I is finite, there exists at least one minimal
set pIpe{plp | pEI}. If pIp is not consisting of only one element P, then there exists ¢
prp sush thai p==g. Cleady pIpEqlq. This is incmpatible, for plp is a minimal set
of {plp|pEI}. Thus we have the relation pIp = {p}, i.e. , p is a primitive idempotent
of S. '

Remark, N. Kimura showed that a finite semigroup, whose elements are idempotents ,
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has at least one primitive idempotent. The proof of Corollary 3, 2 is due to' N, Kimura [37.
Corollary 3.3, Any simple and inversible semigroup having at most finite idempotents is
a quasi-Se-group, '
Lemma 3.5, & is simple if and only if it satisfies the foowing conditions ;
(C. 1) every idempotent is pyimitive,
(C.2) axa==a is solvable for any given aS&.
Proof. If @ is simple, then according to the definition of the simplicity the relation
=@ holds. Henrse the necessity of our conditions is obvious by ‘the definition of a quasi
-27-group. To prove the sufficiency we assume that @ satisfies the conditions (C. 1) and
(C. 2). Let @ be any element of @&. According to the assumption, there exists ¥E @&
such that gxa = a. Cleally gxef. Consequerily axa=agER. Hence @R, and hence
&=, which completes our proof of this lemma,
Theorem 3.3, @& is a quasi-S<—group if and only if it savisfies the following con-
ditions ;
(C. 1) every idempotent is pyimitive,
(C.2) axa=a is solvable for any given ac@.

Proof, Obvious by Lemma 3,5 and Theorem 2, 2,

Corollary 3.4. Let S be an inversible semigroup, and let I ve the torality of all idewm”
potents of S. If the relation ax=xa€I has a unique solution for any given element a
of S, then S is a quasi-2+-group.

Proof. We show first that every idempotent of S is primitive,

Let ¢ and e be any two idempoterts of S. Then the following relations hold successively ;
e-cele =celec ], eele-e=celec],
e-eele==eele-ec ] and e.ccl.
By the assumption, we have eefe = ¢, Therefore any idempoent of S is primitive. Using
Theorem]. 4, Corollary 1. 1and Theorem 3.3, we get this corollary.

Corollary 3. 5.> Let 8 be an inversible semigvoup. If S is left (right) cancellable, then
S is a quasi-2-—group.

Proof, This corolla'y is obvious by Corollary 3.4, since the relation gx = xg€7 has a
unique solution for any given element g of S if S is left (right) cancellable (see the proof
of Corollary 1.2).

4. Construction of inversible semigroups with primitive idempoterits,

Let G be any semigroup, and let E be any ideal of G Rees bifines the factor semigro-
up G/E essentially that obtined by collepsing F into a single zero element 0, while the

remaining elements of G retain their identity, Thus the G/E -product of two nonzero
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elements is defined to be 0 if their G-product lies in FE, and otherwise to be the same
as defined in G [6]. Now the Rees factor cemigroup & /& becomes clearly an invers-
ible ‘semigroup with zevo,

Conversely weé consider the problem of constructing, for given quasi-Ze-group @ and
given inversible semigroup D with zero, every possible inversible semigroup &* with
primitive idempotents which satisfies the following conditions ;

(P.1) &*=Q+D*,
(P.2) @ is an ideal of &* (hence @ is the kernel of &%, since it is a
quasi-gr—group) ,
ce® if A, BeD*and if AB=0
=AB if A, BeD* and if AB=0,

where o denctes the @& *-product and D* denotes the set of nonzero elements of D, We

(P.3) AoB{

shall call such a @* an‘ i, p-extension’ of @ by D,
A, H. Clifford considered the problem of constructing, for given semigroup G and given
semigroup 7" with 0, every possible semigroup > containing G as an ideal, such that

>1/G is isomorphic with 7°. He calls such 2 3] an ¢ extension ’ of G by 7. He showed
the following result [[17.

Theovem, Let G satisfy Cond. A, and let T* ve the set of non-zepro elements of T.
Then every extension of G oy T is found as follows. Let A—>j, and A—>p, be map-
pings of T* into the semigroups T, and Tr of left and right translations of G wespectiv-
ely, and let [A, B] be a yamification ser of T* in G, such that Cond. (C.1~3) are
satisfied, Then the class Sum Z‘,=G-T—T* of G and T* becomes an extension of G by
T if product o therein is defined by the equations (N. 1~4) ;

—Cond, A, If as=bs and sa=sb for all s, then a=b,
Aap if AB=F0,
=
Apary f AB=0[3].
bar Y AB=0,
Oram if AB=0[%].
(C.3) s(Aqt) = (so4)t if 8, tEG, that is, 1. and 0, are linked,
AB if AeT*, BeT* and if AB--Q,
[A.B] if AcT*, BET* and if AB=0.
(N.2) Aos = 1.8 if SEG, AcT*.
(N.3) s0A = 50, if S€EG, AET*.
— (N.4) sot=st if s, tEG.

(C. 1)

(C.2) p405= {

(N. 1) AOB:{

Remark. [k]. Aza,sg and 0pa,s denote the special left and right translations respectively ,
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which are induced by [A4, B] [17.

A semigroup is called a ‘zero-semigroup’ if it contains a zero element but no other
idempotent, The Rees factor semigroup @& /R becomes a zero-semigroup if all idempotents
of @ are primitive. In this paragraph, we shall show a result which is closely related to

the above theorem.,

To save repetition, we shall adhere throughout this paragraph to the following notatioﬁs.

@ will denote any quasi-2:—group. D will denote any inversible semigroup with zero o,
hav_ing no elements in common with €. Especially Z will denote any zero-semigroup,
having no elements in common with @ D¥ and Z* will denote the sets of nonzero
elements of D and Z respectively. The small letters @, b, ¢, d, ¢, s, ¢, u, v, will always
denote elements of @. Except in Corollary 4, 1, the capitals A, B, C, will denote elements
of D*. These will denote, in Corollary 4, 1, elements of Z*, [, will denote the totality
of idempotents of @ and Ip will denote the totality of nonzero idempotents of D, J; and
Je will denote the semigroups of left and right translaticns of erespective}y. For any
ac@, A, will denote the special left translation induced by @ and p, will denote the special
right translation induced by a [1J.

Theorem 4.1. Every i. p-extension of @ by D is found as follows.

Let ¢ 3 A—> A4 and r ; A—>p,4 be mappings of D* into I, and Jr respectively and let
f i LA, B] be a yamification set of D* in @, such that Cond. (C.1~6") are satisfied. Then
the class sum @*:Q:I—D* of @ and D* becomes an i. p-extension of @ by D if product o
therein is defined by the equarions (N, 1'~4') ;

Aar if ABO,
—(C. 1) /1,411,':{ N .
Jram f AB=0.
o4x if AB=0,
Peam if AB=0.
(C.3) s(Aa)=(sp.)t, that is, 14 and 0.4 are linked.

(C.2) pAp]s‘:{

(C.4") 1If there exist no elements B such that AB=BAcI,, then there exists s such
that s =s0,E1,

(C.5") CE,E7] €10if E, E'€ Ip and EE'=0,

(C.6') 2recl,, eop €I, and e(Aze) = (eﬂ‘ﬁ)eze if E€lp, ecl.

AB if AB==0,

[A.B] if AB=0.

(N.2") Aos=As.

(N.3) sodA=s04,

—(N.4') sot=st.

(N.1) AOB={
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Proof, Let @&* be the class sum Q-']-D*of @ and D*, Assume that @&*-product o is
defined by ¢, v, f satisfying Cond. (C. 1/~6') and by the equations (N. I/~4r),
According to the Clifford Theorem, @&* becomes an extension of @ by D since @ sat-
isfies Cond, A, To prove &* to be inversible, we show first that the class sum [= Iq—T—
I of I, and Ip becomes a subsemigroup of @&*. Let a and 8 be two elements of I If
both « and 3 are contained in [, or in fp, then wof is contained in Z; or in [p according
to Cond, (C.5). We assume that aclp and pel; Since aof=},; 8 by (N.27), aope
I, follows from Cond, (C,6'). Similarly we can prove the relation aofcly, if a€l, and
Be s Hence [ becomes a subsemigioup of @*. Moreover it is obvious, by Cond, (C.4/),
that to each element a€@* there exists FE@&* such that wof=foaecl Accordingly &*
becomes an i, p-extension of @ by D. Conversely, let €° be an i, p-extension of ¢ by
D. If we take a ramification set f; CA, B of D* in @ and mapp'ngs ¢, Y of D* into
I, and T, as follows ;

¢ ;5 A=—>}4, where 14 is the left translation of @ such that l,=Aez (e denotes the
&*—product) for all 1c@Q,

Y ; A=—>p., where p, is the right translation of @ such that to,=teA for all t€Q,

fi[A,B] =A-B if AB=0,
then it is easy to see that ¢, v and f satisfy Cond. (C, 1/~6') and that @*-product e
is the same as the product o defined by (N, 1’~4/). Thus our theorem. is completely
proved,

Moreover we obtain the following corollary as a special case of Theorem 4, 1,

Corollary 4. 1. FEwvery i. p-extension of @ by Z is found as follows.
Let ¢ ; A—>)4 and r ; A——0, be mappings of Z* into J, and g respectively and let
fi [A, B) be a vamification set of Z% in @, such that Cond. (C.1'~4') are sarisfied.
Then the class sum @;*zQ:I—Z* of @ and Z* becomes an i.p -extension of @ by Z if
product o therein is defined by the equations (N. 1'~4!).

Corollary 4.2, Let e be any idempotent of Q. Theﬁ the class sum @*:Q—.}—D* of @ and
D* becomes an i, p-extension of @ by D if producto therein is defined as follows ;

{AB if AB=0,
(1) AoB= . 2y Aos=es.
e if AB=0,
3) soA=se. (4) Sot=st

Proof, Let pbe the mapping ; A-ﬁ/le (special left translation), Iet 1 be the mapp-
ing ; A—>p, (special right translation) and let f be the ramification set ; (4, B] =e.
Then this corollary follows from Theorem 4, 1, since these mappings ¢, Y0 and the rami-

f cation set f satisfy Cond., (C.1/~g!).
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Summarizing the resulis of paragarphs 3, 4, we obtain the following conclusion,

Let G be any inversible semigroup with primi’civé idempotents, Let @ be the kernel of
G, and let D be the Rees factor semigroup G/Q. Then D is an inversible semigroup with
Zero, and the structure of G is competely determined by @, D and a pair (¢, |, f) of
mappings ¢, Yr and f= [A. B] saltisfying Cond, (C.1'~6') ;

G={Q, D, (¢, ¥, 1)}
Especially if we consider G only for inversible semigroups whose all idempotents are
primitive, then G/@ is always a zero~semigroup Z and hence we have
G={Q Z (¢, ¥, NH}.
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