ファイル情報(添付) | |
タイトル |
Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions
|
著者 |
Yan Yan
|
収録物名 |
Applied Mathematical Modelling
|
巻 | 68 |
開始ページ | 152 |
終了ページ | 168 |
収録物識別子 |
ISSN 0307-904X
|
内容記述 |
その他
A discrete model describing the increase and decrease of blood cells is considered in this
paper. This hematopoiesis model is a discretization of a delay differential equation with unimodal production function whose coefficients and delay are periodic discrete functions with ω-period. This paper is concerned with the existence of positive ω-periodic solutions. Our results are proved by using the well-known continuation theorem of coincidence degree theory. The existence range of the positive ω-periodic solutions is also clarified. A concrete example and its simulation are also given to illustrate our result. Finally, we examine how positive numbers and coefficients making up our model influence the upper and lower limits of blood cell counts. |
主題 | |
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Elsevier
|
発行日 | 2019-04 |
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | オープンアクセス |
関連情報 |
[DOI] 10.1016/j.apm.2018.11.003
|