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Abstract

A discrete model describing the increase and decrease of blood cells is considered in this
paper. This hematopoiesis model is a discretization of a delay differential equation with
unimodal production function whose coefficients and delay are periodic discrete functions
withω-period. This paper is concerned with the existence of positiveω-periodic solutions.
Our results are proved by using the well-known continuation theorem of coincidence de-
gree theory. The existence range of the positiveω-periodic solutions is also clarified. A
concrete example and its simulation are also given to illustrate our result. Finally, we
examine how positive numbers and coefficients making up our model influence the upper
and lower limits of blood cell counts.
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1. Introduction

As is well known, blood cells are responsible for supplying oxygen and nutrients to
the cells in our body and for discharging carbon dioxide outside the body. In addition,
blood cells have immune action to protect the body from pathogenic bacteria and foreign
bodies. Thus, blood cells are extremely important in vivo tissues.

Immature young cells that will become blood cells in the future are produced one after
another in the bone marrow. This immature cell is called (multipotential) hematopoietic
stem cell. In the bone marrow, hematopoietic stem cells follow a process that changes
into mature cells that can play the original role of blood. Hence, in the bone marrow,
hematopoietic stem cell, blood cells at various stages that it is proliferating and differenti-
ating, and a variety of blood cells that have just been completed are coexisted. Hematopoi-
etic stem cells differentiate into myeloid progenitor cells and lymphoid progenitor cells
as an intermediate stage in order to become various blood cells in the future. Each of
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the differentiated progenitor cells will further differentiate and eventually become mature
blood cells. Blood cells that have been differentiated in the bone marrow are transported
through the peripheral vessels to tissues in vivo.

It is necessary for a certain amount of time for hematopoietic stem cells to repeat
differentiation and become mature blood cells in bone marrow; namely, time lag occurs.
Also, each blood cell has an inherent life span, and aged blood cells are eaten and pro-
cessed by macrophages in the spleen, etc. For the basic knowledge of the hematopoietic
process, for example, see the book [1, Chap. 18].

Mackey and Glass [2] proposed mathematical models to describe hematopoietic pro-
cess by using the first-order differential equations with time delay. They divided their
models into two types according to the characteristics of the production function. Since
regulatory mechanisms in hematopoiesis have not yet been elucidated, they assumed that
the production function is monotonically decreasing or unimodal due to simplification.
Their hematopoiesis model with monotone production function is

x′(t) = −a x(t)+
b

1+ xn(t−τ) (1.1)

with n > 0. On the other hand, their hematopoiesis model with unimodal production
function is

x′(t) = −a x(t)+
b x(t−τ)

1+ xn(t−τ) (1.2)

with n > 1. Here, the variablex is the density of mature blood cells in the blood circu-
lation; the constanta is the rate of blood cells lost by the circulation; the second term of
the right-hand side of (1.1) or (1.2) is the influx of blood cells into the circulation from
hematopoietic stem cells; the constantb is positive; the numberτ is the time delay that
immature cells made in the bone marrow are released into the circulating blood stream as
mature cells. In equations (1.1) and (1.2), the production functionfn is defined by

fn(u) =
1

1+un for u ≥ 0 (1.3)

and

fn(u) =
u

1+un for u ≥ 0, (1.4)

respectively. The former production function is monotonically decreasing and tends to
zero asu→∞. The latter increases monotonically at the beginning and then decreases
monotonically. Hence, it has only one peak.

It is unnatural to think that the environment remains constant. As is well known, pe-
riodic seasonal changes have a major impact on the weather, temperature, food supply
and sexual activity of organisms. Studies have been made from old times that the pop-
ulation density of organisms and the constituents inherent in organisms also change due
to changes in various environments surrounding living organisms and behaviors of or-
ganisms. For example, Nicholson [3] gave a detailed report focusing on the relationship
between periodic change in climate and the population densities of animals.

2



Regarding blood cells which are important components inherent in organisms, Satué
et al. [4] mentioned that the hematological profile of Carthusian broodmares is affected
by changes in temperature, the degree of physical activity, the composition of the grass
that horses eat, and the amount of water intake, which are subjected to seasonal changes.
From experimental data, they demonstrated that (i) red blood cell counts of Carthusian
broodmares from May to August reached higher values; (ii) platelet counts in July and
August were significantly higher than in other months; (iii) white blood cell counts were
highest in the coldest month from February to May, and there was a significant difference
from other months. Also, Maeset al. [5] measured hematological variables of normal
humans such as number of red blood cells and platelets in detail, and pointed out that
they undergo seasonal fluctuations. As another clinical evidence suggesting the periodic
changes of blood cell counts, we can cite studies of white blood cell count and platelet
count in patients with chronic myelogenous leukemia. By using time series data of white
blood cell counts and platelet counts of patients with chronic myelogenous leukemia,
which were published in many publications, Fortin and Mackey [6] found evidence that
these two values change periodically with period ranging from 37 to 83 days (see also [7]).
Hence, in clinical experiments, there are many evidences showing that periodic behavior
of blood cell counts can actually be detected.

External factors of periodic environmental changes due to seasonal variations cannot
be considered for autonomous differential equations with constant coefficients and con-
stant time delays such as models (1.1) and (1.2). From the above-mentioned experimental
points of view, it is reasonable and realistic to assume that coefficients and time lags in the
hematopoiesis model are represented by periodic functions with the same period. Periodic
environmental changes can be taken into account by making a modified hematopoiesis
model described with a non-autonomous delay differential equation.

A large number of attempts have been made on the asymptotic behavior of solutions
of the hematopoiesis models (1.1), (1.2) and their modifications. We divide hematopoiesis
models into two types depending on the property of the production function. A hemato-
poiesis model with the monotonicallydecreasingproduction function (1.3) and a hemato-
poiesis model with theunimodalproduction function (1.4) are calledD-typeandU-type,
respectively. We can refer to [8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and [9, 10, 11, 13, 18, 19,
20, 21, 22] for the study of hematopoiesis models of D-type and of U-type, respectively.
The main themes of those studies are as follows:

(i) existence and uniqueness of positive periodic solutions;

(ii) oscillation and nonoscillation of solutions around a positive equilibrium or a posi-
tive periodic solution;

(iii) global asymptotic stability of a positive equilibrium;

(iv) convergence to a periodic solution of all positive solutions.

Let us introduce each one of typical results on the hematopoiesis D-type model and the
hematopoiesis U-type model.
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Wang and Li [15] considered the hematopoiesis D-type model

x′(t) = −a(t)x(t)+
b(t)

1+ xn(t−τ(t)) (1.5)

with n > 0, wherea, b : [0,∞)→ (0,∞) andτ : [0,∞)→ [0,∞) are continuous andω-
periodic functions withω > 0; namely,

a(t) = a(t+ω), b(t) = b(t+ω) and τ(t) = τ(t+ω) (1.6)

for t ≥ 0. They presented a sufficient condition for the existence and uniqueness of positive
ω-periodic solutions by applying the fixed point theorem in normal cones (see Guo [23]).
Their result is as follows:

Theorem A. Assume that(1.6)holds. If n > 1 and

exp
(∫ ω

0 a(t)dt
)

exp
(∫ ω

0 a(t)dt
)
−1

∫ ω

0
b(t)dt ≤ n

√
1

n−1
,

then equation(1.5)has a unique positiveω-periodic solution.

On the other hand, as a result of hematopoiesis U-type models, we can cite a work
of Wu et al. [22]. They considered the hematopoiesis model which is a generalization of
(1.2),

x′(t) = −a(t)x(t)+
b(t)x(t−τ(t))
1+ xn(t−τ(t)) (1.7)

with n > 1 under the assumption (1.6), and obtained the following sufficient condition for
the existence of positiveω-periodic solutions by using the continuation theorem given by
Gaines and Mawhin [24].

Theorem B. Assume that(1.6)holds. If n > 1 and

a(t) < b(t) for t ∈ [0,ω],

then equation(1.7)has at least one positiveω-periodic solution.

Wu et al. [22] proved that Theorem B is true even if0 < n ≤ 1. However, this section
is limited to the case thatn > 1, because the production functionbu/(1+ un) does not
become unimodal if0 < n ≤ 1. The case that0 < n ≤ 1 will be discussed in Appendix of
this paper.

Although blood cells in a human or a horse are discrete entities, since its number
is enormous, it is reasonable to treat it like a continuum and express the hematopoiesis
model with a differential equation with time delay. However, red blood cells, white blood
cells, etc. play a role one by one, and they are represented by the number contained
in one microliter of blood. They are never a continuum. In that sense, to examine the

4



increase and decrease in the number of blood cells, it can be said that a discrete model
is more suitable than a continuous model such as equation (1.5) or (1.7). Based on this
thought, many researchers have studied discrete models of hematopoiesis concerning the
same theme as a continuous model such as (i)–(iv) above. For example, refer to [25, 26,
27, 28, 29, 30, 31, 32] and the references cited therein. In those studies, there seems to
be many analogies between the results of continuous model and discrete model. We will
explain with one example.

Yao [31] discretized (1.5) and considered the following hematopoiesis D-type model

∆x(k) = −a(k)x(k)+
b(k)

1+ xn(k−τ(k))
(1.8)

with n > 0, where∆x(k) = x(k+1)− x(k), anda : Z→ (0,1), b : Z→ (0,∞) andτ : Z→ Z+
def
= N∪{0} areω-periodic discrete functions withω ∈ N; namely,

a(k) = a(k+ω), b(k) = b(k+ω) and τ(k) = τ(k+ω) (1.9)

for all k ∈ Z. We can state a result of Yao [31] as follows (note that this is not the original
form):

Theorem C. Assume that(1.9)holds. If 0 < n ≤ 1 or

n > 1 and
1

1−∏ω
k=1(1−a(k))

ω∑
k=1

b(k) ≤ n

√
1

n−1
,

then equation(1.8)has a unique positiveω-periodic solution.

Theorem C is proved by applying the same fixed point theorem used to prove Theo-
rem A. Because of use of the fixed point theorem, we can obtain the uniqueness theorem
for positiveω-periodic solutions. Unfortunately, however, the location of the only solution
cannot be estimated in Theorems A and C.

It is clear that assumption (1.9) corresponds to assumption (1.6) and

exp
(∫ ω

0 a(t)dt
)

exp
(∫ ω

0 a(t)dt
)
−1
=

1

1− exp
(
−
∫ ω

0 a(t)dt
) .

Since
∫ ω

0 a(t)dt is approximated to
∑ω

k=1 a(k), we see that

exp

(
−
∫ ω

0
a(t)dt

)
≈ exp

− ω∑
k=1

a(k)

 = e−a(1)e−a(2) · · ·e−a(ω) ≈
ω∏

k=1

(
1−a(k)

)
.

Similarly,
∫ ω

0 b(t)dt is approximated to
∑ω

k=1 b(k). Hence, it is safe to say that there is an
analogy between Theorems A and C.
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By using the same discretization from (1.5) to (1.8), we can obtain the hematopoiesis
U-type model

∆x(k) = −a(k)x(k)+
b(k)x(k−τ(k))
1+ xn(k−τ(k))

(1.10)

which corresponds to (1.7). Blood cells are transported to the whole body while drifting
in the plasma. They are divided into three types: erythrocyte (red blood cell), leukocyte
(white blood cell) and thrombocyte (platelet). Among them, leukocytes are mainly com-
posed of neutrophils, basophils, eosinophils, lymphocytes, and monocytes. In clinical
studies, it has confirmed that neutrophils mature in bone marrow in about 2 weeks and
are released into the bloodstream after 2 days (see [33]). Also, basophils differentiate and
mature in the bone marrow during 7 days (see [34, 35]). These clinical results suggest that
at least two types of leukocytes take different time to enter the bloodstream. It is therefore
meaningful to consider a hematopoietic model with multiple production functions that are
dominated by different time delays.

For the reason above, we discuss the discrete model of hematopoiesis,

∆x(k) = −a(k)x(k)+
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

, (1.11)

which is a realistic modification of (1.10). Here,m is a natural number;n is a real number
greater than 1;a : Z→ (0,1), bi : Z→ (0,∞) andτi : Z→ Z+(1 ≤ i ≤ m) areω-periodic
discrete functions. Sinceτi (1 ≤ i ≤ m) areω-periodic, there exists the maximum valueτ
of the sequences{τ1(k)}, {τ2(k)}, . . . , {τm(k)}; namely,

τ = max
1≤i≤m

{
max

1≤k≤ω
τi(k)

}
∈ Z+.

Let ϕ(−τ), ϕ(−τ+1), . . . ,ϕ(0) be arbitrary(τ+1) given constants. Since0 < a(k) < 1 for
k ∈ Z, if ϕ(−τ), ϕ(−τ+1), . . . ,ϕ(0) are positive, then equation (1.11) has a unique positive
solution satisfying the initial condition

x(k) = ϕ(k) > 0 for k ∈ [−τ,0]∩Z. (1.12)

Since equation (1.11) is a biological model, it is natural to assume thatϕ(k) > 0 for k ∈
[−τ,0]∩Z.

The purpose of this paper is to give a sufficient condition for the existence of positive
ω-periodic solutions of (1.11). To state our results simply, we denote the maximum value
of bi(1), bi(2), . . . , bi(ω) by

bi = max
1≤k≤ω

bi(k) for 1 ≤ i ≤ m.

Theorem 1. Suppose thata, bi andτi (1 ≤ i ≤ m) are positiveω-periodic. If there exists
a γ > 1 such that

γa(k) <
m∑

i=1

bi(k) for k = 1,2, . . . ,ω, (1.13)
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then equation(1.11)with n > 1 has at least one positiveω-periodic solution located in the
region[A,B], where

A ≤min

 n
√
γ−1,

γan−1∑m
i=1 bi

an+
(∑m

i=1 bi

)n

 and B =
1
a

m∑
i=1

bi,

in whicha =min1≤k≤ω a(k).

Note that if

a(k) <
m∑

i=1

bi(k) for k = 1,2, . . . ,ω,

then condition (1.13) is inevitably satisfied. In fact, let

γ =

1+ min
1≤k≤ω

{∑m
i=1 bi(k)

a(k)

}
2

.

Then, by the periodicities ofa andbi (1 ≤ i ≤ m), we have

γ < 2γ−1 = min
1≤k≤ω

{∑m
i=1 bi(k)

a(k)

}
≤

∑m
i=1 bi(k)

a(k)
for k = 1,2, . . . ,ω;

namely, condition (1.13).
In the special case thatm = 1, Jianget al. [27] already showed that the condition

a(k) < b(k) for k = 1,2, . . . ,ω

is a sufficient condition for the existence of positiveω-periodic solutions of (1.10) under
the assumption (1.9). Unfortunately, however, the region of existence was not clarified.
We will prove Theorem 1 by using the the continuation theorem of Gaines and Mawhin
[24]. The advantage of using the continuation theorem is that the existence range of the
positiveω-periodic solutions of (1.11) can be evaluated.

Remark 1. In Theorem 1, we assume that the coefficientsa, bi and the time delaysτi
(i = 1,2, . . . ,m) have the same periodω. However, this assumption is for the sake of
convenience and is not essential. In the case that these periods are different, Theorem 1
holds for their least common multipleω ∈N. If any coefficient or time delay is a constant
(that is, if there is no period), then we may regard its period as 1.

Remark 2. Under the assumptions of Theorem 1, even if there are two or more positive
ω-periodic solutions, they exist in the same range[A,B].
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2. Priori bounds for parametric delay difference equation

Consider the parametric delay difference equation

∆x(k) = −λa(k)x(k)+λ
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

(2.1)

for each parameterλ ∈ (0,1). First of all, we give the following result which is essential
to prove Theorem 1.

Proposition 2. Suppose thata, bi andτi (1 ≤ i ≤ m) are positiveω-periodic. If condition
(1.13)holds, then every positiveω-periodic solutionx of (2.1)with n > 1 satisfies that

A < x(k) < B for k = 1,2, . . . ,ω,

whereA and B are constants given in Theorem1.

PROOF. Let x be any positiveω-periodic solution of (2.1) with the initial condition (1.12).
For convenience, let

x = max
1≤k≤ω

x(k) and x = min
1≤k≤ω

x(k).

Sincebi (1 ≤ i ≤ m) andx are positiveω-periodic, we see that0 < bi(k) ≤ bi for all k ∈ Z
andx ≤ x(k) ≤ x for all k ∈ Z+. Equation (2.1) can be rewritten to

x(k+1) = (1−λa(k))x(k)+λ
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

. (2.2)

Hence, it follows from the periodicities ofa, bi andτi (1 ≤ i ≤ m) that

x = max
1≤k≤ω

{x(k+1)}

≤ max
1≤k≤ω

{(1−λa(k))x(k)}+λ max
1≤k≤ω

 m∑
i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))


≤ max

1≤k≤ω
{(1−λa(k))} max

1≤k≤ω
{x(k)}+λ max

1≤k≤ω

 m∑
i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))


≤ (1−λa)x+λ max

1≤k≤ω

 m∑
i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

 ,
wherea is a constant given in Theorem 1. Hence, we have

x ≤ 1
a

max
1≤k≤ω

 m∑
i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

 . (2.3)
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Since0 < λ < 1 and0 < a(k) < 1 for all k ∈ Z, we see that1−λa(k) > 0 for k ∈ Z. Multiply
both sides of (2.2) by

∏k
r=0 1/(1−λa(r)) to obtain

x(k+1)
k∏

r=0

1
1−λa(r)

− x(k)
k−1∏
r=0

1
1−λa(r)

= λ

m∑
i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

k∏
r=0

1
1−λa(r)

. (2.4)

Let k1 be a natural number such that

τ ≤ k1 ≤ τ+ω−1 and x(k1) = x.

Summing both sides of (2.4) overk ranging fromk1 to k1 +ω− 1 and usingx(k1 +ω) =
x(k1) = x, we get

x
k1−1∏
r=0

1
1−λa(r)

k1+ω−1∏
r=k1

1
1−λa(r)

−1

 = λ k1+ω−1∑
s=k1

 m∑
i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))

s∏
r=0

1
1−λa(r)

 .
Sincea is a positiveω-periodic function, we see that

k1+ω−1∏
r=k1

(1−λa(r)) =
ω−1∏
r=0

(1−λa(r)). (2.5)

Hence, we have

x =
λ
∏k1+ω−1

r=0 (1−λa(r))

1−∏k1+ω−1
r=k1

(1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))

s∏
r=0

1
1−λa(r)


=
λ
∏k1+ω−1

r=0 (1−λa(r))

1−∏ω−1
r=0 (1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))

s∏
r=0

1
1−λa(r)


=

λ

1−∏ω−1
r=0 (1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))

k1+ω−1∏
r=s+1

(1−λa(r))

 . (2.6)

Note that we have not used the condition thatn > 1 so far. Using (2.3) and (2.6), we
will estimate the upper boundx and the lower boundx. Sincen > 1, we see that

u < un < 1+un for u > 0.

Hence, it follows from (2.3) that

x <
1
a

max
1≤k≤ω

 m∑
i=1

bi(k)

 ≤ 1
a

m∑
i=1

bi = B.

Recall that the functionfn defined byfn(u) = u/(1+un) for u ≥ 0 is a unimodal function.
Sincex ≤ x(k) ≤ x for all k ∈ Z+, it turns out that

x(s−τi(s))
1+ xn(s−τi(s))

≥min
{
fn(x), fn(x)

}
for s ≥ τ.
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Note thatk1 ≥ τ. Then, by using (1.13), (2.5) and (2.6), we obtain

x ≥
λmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s)
k1+ω−1∏
r=s+1

(1−λa(r))


>
λmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∑
s=k1

γa(s)
k1+ω−1∏
r=s+1

(1−λa(r))


=
γmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∑
s=k1

λa(s)
k1+ω−1∏
r=s+1

(1−λa(r))


=
γmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∑
s=k1

(1− (1−λa(s))
) k1+ω−1∏

r=s+1

(1−λa(r))


=
γmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∑
s=k1

k1+ω−1∏
r=s+1

(1−λa(r))−
k1+ω−1∏

r=s

(1−λa(r))


=
γmin

{
fn(x), fn(x)

}
1−∏ω−1

r=0 (1−λa(r))

k1+ω−1∏
r=k1+ω

(1−λa(r))−
k1+ω−1∏

r=k1

(1−λa(r))

 .
Since

∏k1+ω−1
r=k1+ω

(1−λa(r)) can be regarded as 1, we can conclude that

x > γmin
{
fn(x), fn(x)

}
. (2.7)

Here, we divide the argument into two cases to be considered: (i)fn(x)≤ fn(x); (ii) fn(x)>
fn(x).
Case(i): It follows from (2.7) thatx > γ fn(x); namely,

x > n
√
γ−1.

Case(ii): The function fn has the only peak value at1/
n√
n−1, and fn is monotone in-

creasing on
[
0,1/

n√
n−1

)
and monotone decreasing on

(
1/

n√
n−1,∞

)
. Hence, we see that

x > 1/
n√
n−1. In fact, if x ≤ 1/

n√
n−1, then fn(x) ≤ fn(x) ≤ fn(1/

n√
n−1). This is a contra-

diction. Sincex > 1/
n√
n−1, it follows from (2.7) that

x > γ fn(x) > γ fn(B) =
γan−1∑m

i=1 bi

an+
(∑m

i=1 bi

)n .

Thus, in both cases, we can estimate that

x >min

 n
√
γ−1,

γan−1∑m
i=1 bi

an+
(∑m

i=1 bi

)n

 ≥ A.

Thus, every positiveω-periodic solutionx of (2.1) satisfies

A < x ≤ x(k) ≤ x < B

for all k ∈ Z+. The proof is now complete. □
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3. Preparation for proving

In the next section, we will prove Theorem 1 by using the continuation theorem. To
introduce the continuation theorem, we give some definitions.

Let X be a Banach space andL : Dom L ⊂ X→ X a linear mapping. The mappingL is
said to be aFredholm mapping of index zeroif

(a) dimKer L = codimIm L < +∞,

(b) Im L is closed inX.

If L is a Fredholm mapping of index zero andP, Q : X→ X are continuous projectors such
that

Im P = Ker L;

Ker Q = Im L = Im(I−Q),

whereI is the identity mapping fromX to X, then the restrictionLP : Dom L∩Ker P→ Im L
is invertible. We denote the inverse of the restriction byKP : Im L→ Dom L∩Ker P. Let
N : X→ X be a continuous mapping andΩ an open bounded subset ofX. The mappingN
is said to beL-compactonΩ if

(a) QN(Ω) is bounded,

(b) KP(I−Q)N :Ω→ X is compact.

Now we are ready to state the continuation theorem (for example, see [24, 36, 37]).

Lemma 3. Let L be a Fredholm mapping of index zero and letN be L-compact onΩ.
Suppose that

(i) for each parameterλ ∈ (0,1), every solutionx of Lx = λNx satisfiesx < ∂Ω;

(ii) QNx , 0 for eachx ∈ ∂Ω∩Ker L and

deg
{
QN,Ω∩Ker L, 0

}
, 0.

Then the equationLx = Nx has at least one solution staying inX∩ Ω.

We will apply the above continuation theorem to prove Theorem 1. To this end, we
define a Banach spaceX by

X =
{
x ∈C(Z+, R) : x(k+ω) = x(k)

}
.

It is clear thatX is endowed with the maximum norm||x|| = max
1≤k≤ω

|x(k)|. Also, we define

two mappingsL andN by

Lx = x(k+1)− x(k)

11



and

Nx = −a(k)x(k)+
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

.

If x ∈ X, then

Lx(k+ω) = x(k+ω+1)− x(k+ω) = x(k+1)− x(k) = Lx(k)

for all k ∈ Z+. This means thatLx ∈ X. Let x1, x2 ∈ X andc1, c2 ∈ R. Then

L(c1x1+ c2x2) = (c1x1+ c2x2)(k+1)− (c1x1+ c2x2)(k)

= c1
(
x1(k+1)− x1(k)

)
+ c2

(
x2(k+1)− x2(k)

)
= c1Lx1(k)+ c2Lx2(k).

Hence,L is a linear mapping fromX to X. Sincea, bi andτi (1 ≤ i ≤ m) are positive
ω-periodic, if x ∈ X, then

Nx(k+ω) = −a(k+ω)x(k+ω)+
m∑

i=1

bi(k+ω)x(k+ω−τi(k+ω))
1+ xn(k+ω−τi(k+ω))

= −a(k)x(k)+
m∑

i=1

bi(k)x(k+ω−τi(k))
1+ xn(k+ω−τi(k))

= −a(k)x(k)+
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

= Nx(k)

for all k ∈ Z+. Hence,N is a continuous mapping fromX to X.

4. Proof of Theorem 1

From the definition ofL it turns out that

Ker L =
{
x ∈ X : x(k) ≡ c ∈ R}

and

Im L =

x ∈ X :
ω∑

k=1

x(k) = 0

 .
In fact, if Lx(k) = 0 for all k ∈ Z+, thenx(k+1) ≡ x(k). Let x ∈ X. Then

ω∑
k=1

Lx(k) = x(ω+1)− x(1) = 0.

It is clear thatdimKer L = 1 = codimIm L < +∞ andIm L is closed inX. Hence,L is a
Fredholm mapping of index zero.

12



DefineP : X→ X by

Px =
1
ω

ω∑
k=1

x(k),

and letQ = P. ThenP andQ are continuous projectors. For anyx ∈ X,

Px(k+1)−Px(k) =
1
ω

ω∑
k=1

x(k+1)− 1
ω

ω∑
k=1

x(k)

=
1
ω

ω+1∑
k=2

x(k)− 1
ω

ω∑
k=1

x(k) =
1
ω

(
x(ω+1)− x(1)

)
= 0

for all k ∈ Z+. Hence,Im P =Ker L. It is clear thatx ∈Ker Q ⊂ X if and only if
∑ω

k=1 x(k) =
0; namely,x ∈ Im L. For anyx ∈ Im L,

y(k) = x(k)− 1
ω

ω∑
k=1

x(k) = x(k)

for all k ∈ Z+. Hence,x = y ∈ Im(I−Q). Conversely, for anyy ∈ Im(I−Q), there exists an
x ∈ X such that

y(k) = x(k)− 1
ω

ω∑
k=1

x(k)

for all k ∈ Z+. Hence, we have

ω∑
k=1

y(k) =
ω∑

k=1

x(k)− 1
ω

ω∑
k=1

x(k)

 = ω∑
k=1

x(k)− 1
ω

ω∑
k=1

x(k)
ω∑

k=1

1

=

ω∑
k=1

x(k)−
ω∑

k=1

x(k) = 0.

This means thaty ∈ Im L. Thus, we see thatKer Q = Im L = Im(I−Q).
From the relations have shown in the immediately preceding paragraph, the restriction

LP : Dom L∩Ker P→ Im L has the inverseKP : Im L→ Dom L∩Ker P. The inverseKP is
given by

KPx =
k−1∑
s=0

x(s)− 1
ω

ω−1∑
s=0

s∑
r=0

x(r)

for x ∈ Im L. In fact, since

KPx(k+ω)−KPx(k) =
k+ω−1∑

s=0

x(s)− 1
ω

ω−1∑
s=0

s∑
r=0

x(r)−
k−1∑
s=0

x(s)+
1
ω

ω−1∑
s=0

s∑
r=0

x(r)

=

k+ω−1∑
s=k

x(s) =
ω−1∑
s=0

x(s) = 0

13



for all k ∈ Z+, it follows thatx ∈ Im L impliesKPx ∈ Dom L. It also turns out that

PKPx =
1
ω

ω∑
k=1

KPx(k) =
1
ω

ω∑
k=1

k−1∑
s=0

x(s)− 1
ω

ω−1∑
s=0

s∑
r=0

x(r)


=

1
ω

 ω∑
k=1

k−1∑
s=0

x(s)− ω
ω

ω−1∑
s=0

s∑
r=0

x(r)

 = 1
ω

 ω∑
k=1

k−1∑
s=0

x(s)−
ω∑

k=1

k−1∑
r=0

x(r)

 = 0.

Hence,x ∈ Im L impliesKPx ∈ Ker P. For anyx ∈ Im L, we have

LPKPx = KPx(k+1)−KPx(k)

=

k∑
s=0

x(s)− 1
ω

ω−1∑
s=0

s∑
r=0

x(r)−
k−1∑
s=0

x(s)+
1
ω

ω−1∑
s=0

s∑
r=0

x(r)

= x(k) = Ix.

In addition, for anyx ∈ Dom L∩Ker P, we have

KPLPx = KP
(
x(k+1)− x(k)

)
=

k−1∑
s=0

(
x(s+1)− x(s)

)− 1
ω

ω−1∑
s=0

s∑
r=0

(
x(r+1)− x(r)

)
= x(k)− x(0)− 1

ω

ω−1∑
s=0

(
x(s+1)− x(0)

)
= x(k)− 1

ω

ω∑
s=1

x(s).

Sincex ∈Ker P =Ker Q = Im L, we see that
∑ω

s=1 x(s) = 0. Hence,KPLPx = x(k) = Ix. We
therefore conclude thatKP = L−1

P .

We next show the mappingN defined above isL-compact onΩ, where

Ω =
{
x ∈ X : A < x(k) < B

}
.

To this end, we will check that

(a) QN(Ω) is bounded,

(b) KP(I−Q)N :Ω→ X is compact.

By a straightforward calculation, we obtain

QNx =
1
ω

ω∑
k=1

−a(k)x(k)+
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))


and
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Kp(I−Q)Nx =
k−1∑
s=0

−a(s)x(s)+
m∑

i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))


−

(
k
ω
− ω+1

2ω

) ω∑
s=1

−a(s)x(s)+
m∑

i=1

bi(s)x(s−τi(s))
1+ xn(s−τi(s))


− 1
ω

ω−1∑
s=0

s∑
r=0

−a(r)x(r)+
m∑

i=1

bi(r)x(r−τi(r))
1+ xn(r−τi(r))


for x ∈ X. Since

ω∑
k=1

−a(k)x(k)+
m∑

i=1

bi(k)x(k−τi(k))
1+ xn(k−τi(k))

 < ω∑
k=1

 m∑
i=1

bi(k)

 = ω m∑
i=1

bi

for x ∈Ω, the mappingQN is bounded onΩ. Hence, the above sentence (a) is true.
To show that the sentence (b) is also true, from the definition of the compactness

of mappings, we have only to prove thatKP(I −Q)N(E) is relatively compact for any
bounded subsetE ⊂Ω ⊂ X. As a matter of fact, we can even show that it is compact.

SinceE is a subspace of a finite dimensional Banach spaceX, we see thatE is closed.
Hence,E is compact. Note that a metric space is compact if and only if it is sequentially
compact. Hence,E is sequentially compact; namely, every infinite sequence inE contains
a convergent subsequence{x j} j∈N whose limit x∗ belongs toE. Let y∗ = KP(I −Q)Nx∗.
Sincelim j→∞ x j = x∗ ∈ E, it turns out that

lim
j→∞

Kp(I−Q)Nx j = lim
j→∞

k−1∑
s=0

(
−a(s)x j(s)

)
+ lim

j→∞

k−1∑
s=0

m∑
i=1

bi(s)x j(s−τi(s))

1+ xn
j(s−τi(s))

−
(

k
ω
− ω+1

2ω

)
lim
j→∞

ω∑
s=1

(
−a(s)x j(s)

)
−

(
k
ω
− ω+1

2ω

)
lim
j→∞

ω∑
s=1

m∑
i=1

bi(s)x j(s−τi(s))

1+ xn
j(s−τi(s))

− 1
ω

lim
j→∞

ω−1∑
s=0

s∑
r=0

(
−a(r)x j(r)

)
− 1
ω

lim
j→∞

ω−1∑
s=0

s∑
r=0

m∑
i=1

bi(r)x j(r−τi(r))

1+ xn
j(r−τi(r))

=

k−1∑
s=0

(
−a(s) lim

j→∞
x j(s)

)
+

k−1∑
s=0

m∑
i=1

bi(s) lim j→∞ x j(s−τi(s))

1+ lim j→∞ xn
j(s−τi(s))

−
(

k
ω
− ω+1

2ω

) ω∑
s=1

(
−a(s) lim

j→∞
x j(s)

)
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−
(

k
ω
− ω+1

2ω

) ω∑
s=1

m∑
i=1

bi(s) lim j→∞ x j(s−τi(s))

1+ lim j→∞ xn
j(s−τi(s))

− 1
ω

ω−1∑
s=0

s∑
r=0

(
−a(r) lim

j→∞
x j(r)

)

− 1
ω

ω−1∑
s=0

s∑
r=0

m∑
i=1

bi(r) lim j→∞ x j(r−τi(r))

1+ lim j→∞ xn
j(r−τi(r))

= Kp(I−Q)N lim
j→∞

x j = Kp(I−Q)Nx∗ = y∗.

Hence,Kp(I−Q)N(E) is compact.
Next, we check that the assumption (i) of Lemma 3 is satisfied. From the definitions

of L and N, we see that anyω-periodic solution of (2.1) corresponds one-to-one to a
solution ofLx = λNx with λ ∈ (0,1). Proposition 2 shows that every positive solution of
Lx = λNx stays in the open bounded sebsetΩ. Let y be an element of∂Ω. Suppose that
y is a solution ofLx = λNx. Of course,y ∈ X. Then, we can find ak∗ ∈ {1,2, . . . ,ω} so
thaty(k∗) = min1≤k≤ω y(k). There are three cases to be considered. Ify(k∗) > A, theny is
a positive solution ofLx = λNx. Hence, we see thatA < y(k) < B for k = 1,2, . . . ,ω. It
turns out from the fact that there exists a neighborhood ofy whose all elements belong
to Ω. This contradicts the fact thaty ∈ ∂Ω. If 0 < y(k∗) ≤ A, theny is a positive solution
of Lx = λNx. However, this contradicts the conclusion of Proposition 2. Ify(k∗) ≤ 0,
then there exists a neighborhood ofy whose all elements do not belong toΩ. This also
contradicts the fact thaty ∈ ∂Ω. Hence, ify ∈ ∂Ω, theny is never any solution ofLx = λNx.
This means that the assumption (i) holds.

Finally, we check that the assumption (ii) of Lemma 3 is also satisfied. Ifx ∈ ∂Ω∩
Ker L, then x(k) = A or x(k) = B for all k ∈ Z+. Let x1 and x2 be sequences satisfying
x1(k) ≡ A andx2(k) ≡ B, respectively. Then, by (1.13) we have

QNx1 =
1
ω

ω∑
k=1

−Aa(k)+
A

1+An

m∑
i=1

bi(k)

 > A
ω

(
γ

1+An −1
) ω∑

k=1

a(k).

SinceA ≤ n
√
γ−1, we see thatQNx1 > 0. Recall that

bi = max
1≤h≤ω

bi(k) and B =
1
a

m∑
i=1

bi.

Then we obtain

QNx2 =
1
ω

ω∑
k=1

−Ba(k)+
B

1+Bn

m∑
i=1

bi(k)

 ≤ − B
ω

ω∑
k=1

a(k)+
B

1+Bn

m∑
i=1

bi

< − B
ω

ω∑
k=1

a(k)+
m∑

i=1

bi ≤ −aB+aB = 0.
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We therefore conclude thatQNx , 0 for eachx ∈ ∂Ω∩Ker L. To seek the degreedeg
{
QN,

Ω∩Ker L, 0
}
, we define a continuous mappingH :Ω∩Ker L× [0,1]→ X by

H(x,µ) = −µ
(
Ix− A+B

2

)
+ (1−µ)QNx.

It is clear thatH connects two continuous mappingsQN, − I+ (A+B)/2:Ω∩Ker L→ X.
Recall that the elements of∂Ω∩Ker L are only two sequencesx1 andx2 satisfyingx1(k) ≡
A andx2(k) ≡ B, respectively. We have

H(xi,µ) = −µ
(
Ixi−

A+B
2

)
+ (1−µ)QNxi = (−1)iµ

(A−B
2

)
+ (1−µ)QNxi

for i = 1,2 andµ ∈ [0,1]. SinceA < B and QNx2 < 0 < QNx1, we see thatH(x2,µ) <
0 < H(x1,µ). Hence,H(x,µ) , 0 for all (x,µ) ∈ ∂Ω∩Ker L× [0,1], and therefore,H is a
homotopic mapping. Since the mappingsQN and− I+(A+B)/2 are homotopy equivalent,
it turns out that

deg
{
QN,Ω∩Ker L, 0

}
= deg

{
− I+

A+B
2
,Ω∩Ker L, 0

}
= 1 , 0.

Hence, the assumption (ii) holds.
Since all assumptions of Lemma 3 are satisfied, the equationLx = Nx has at least

one solution lying inX ∩ Ω. In other words, equation (1.11) has at least one positive
ω-periodic solution located in the region[A,B]. The proof is now complete. □

5. How to apply Theorem 1

We first give a concrete example to illustrate Theorem 1.

Example 1. Consider the equation

∆x(k) = −a(k)x(k)+
b1(k)x(k−τ1(k))

1+ x2(k−τ1(k))
+

b2(k)x(k−τ2(k))

1+ x2(k−τ2(k))
, (5.1)

where

a(k) =


1/2 if k = 0,

5/6 if k = 1,

1/4 if k = 2,

1/5 if k = 3,

(5.2)

b1(k) =


3/2 if k = 0,

1/2 if k = 1,

2 if k = 2,

1/4 if k = 3,

b2(k) =


1 if k = 0,

7/6 if k = 1,

5/8 if k = 2,

3/4 if k = 3,

(5.3)
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τ1(k) = 6+2cos
(
π

2
k
)
=


8 if k = 0,

6 if k = 1,

4 if k = 2,

6 if k = 3,

τ2(k) = 5+3sin
(
π

2
k
)
=


5 if k = 0,

8 if k = 1,

5 if k = 2,

2 if k = 3,

(5.4)

anda(k) = a(k+4), bi(k) = bi(k+4), τi(k) = τi(k+4) for k ∈ Z andi = 1,2. Then equation
(5.1) has at least one positive4-periodic solution.

It is clear thatω = 4, anda, bi andτi (i = 1,2) areω-periodic discrete functions satis-
fying 0 < a(k) < 1, bi(k) > 0 andτi(k) > 0 for k ∈ Z andi = 1,2. Let

γ =

1+ min
1≤k≤4

{
b1(k)+b2(k)

a(k)

}
2

=
3
2
> 1.

Then it is easy to check that condition (1.13) is satisfied. Hence, from Theorem 1 it turns
out that equation (5.1) has at least one positive4-periodic solution under the assumptions
(5.2)–(5.4).

The advantage of Theorem 1 is that we can evaluate the existence range of the positive
ω-periodic solutions of (1.11). In this example, sincem = n = 2, γ = 3/2,

a = min
1≤k≤ω

a(k) = 1/5, b1 = max
1≤k≤ω

b1(k) = 2 and b2 = max
1≤k≤ω

b2(k) =
7
6
,

we can calculate as follows:√
γ−1 =

1
√

2
,

m∑
i=1

bi =
19
6

and
γan−1∑m

i=1 bi

an+
(∑m

i=1 bi

)n =
45

511
.

Hence, Theorem 1 shows that positive4-periodic solutions locate in the region

[A,B] =

[
45

511
,

95
6

]
.

In fact, we can find a positive4-periodic solution by using hand calculations. As
mentioned in Section 1, to seek a concrete solution of (5.1), we need to choose a set of
initial pointsϕ(−τ), ϕ(−τ+1), . . . ,ϕ(0), where

τ = max
1≤i≤2

{
max
1≤k≤4

τi(k)
}
= 8.

Let

ϕ(k) =


1/2 if k = −8,

1/2 if k = −7,

∗ if k = −6,

1/2 if k = −5,

and ϕ(k) =



2 if k = −4,

2 if k = −3,

1 if k = −2,

2 if k = −1,

2 if k = 0,

(5.5)
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where∗ can be any positive real number. Then we have

x(1) =
(
1−a(0)

)
x(0)+

b1(0)x(0−τ1(0))

1+ x2(0−τ1(0))
+

b2(0)x(0−τ2(0))

1+ x2(0−τ2(0))

=

(
1− 1

2

)
×2+

3
2
× x(−8)

1+ x2(−8)
+1× x(−5)

1+ x2(−5)
= 2,

x(2) =
(
1−a(1)

)
x(1)+

b1(1)x(1−τ1(1))

1+ x2(1−τ1(1))
+

b2(1)x(1−τ2(1))

1+ x2(1−τ2(1))

=

(
1− 5

6

)
×2+

1
2
× x(−5)

1+ x2(−5)
+

7
6
× x(−7)

1+ x2(−7)
= 1,

x(3) =
(
1−a(2)

)
x(2)+

b1(2)x(2−τ1(2))

1+ x2(2−τ1(2))
+

b2(2)x(2−τ2(2))

1+ x2(2−τ2(2))

=

(
1− 1

4

)
×1+2× x(−2)

1+ x2(−2)
+

5
8
× x(−3)

1+ x2(−3)
= 2,

x(4) =
(
1−a(3)

)
x(3)+

b1(3)x(3−τ1(3))

1+ x2(3−τ1(3))
+

b2(3)x(3−τ2(3))

1+ x2(3−τ2(3))

=

(
1− 1

5

)
×2+

1
4
× x(−3)

1+ x2(−3)
+

3
4
× x(1)

1+ x2(1)
= 2,

x(5) =
(
1−a(4)

)
x(4)+

b1(4)x(4−τ1(4))

1+ x2(4−τ1(4))
+

b2(4)x(4−τ2(4))

1+ x2(4−τ2(4))

=

(
1− 1

2

)
×2+

3
2
× x(−4)

1+ x2(−4)
+1× x(−1)

1+ x2(−1)
= 2,

x(6) =
(
1−a(5)

)
x(5)+

b1(5)x(5−τ1(5))

1+ x2(5−τ1(5))
+

b2(5)x(5−τ2(5))

1+ x2(5−τ2(5))

=

(
1− 5

6

)
×2+

1
2
× x(−1)

1+ x2(−1)
+

7
6
× x(−3)

1+ x2(−3)
= 1,

x(7) =
(
1−a(6)

)
x(6)+

b1(6)x(6−τ1(6))

1+ x2(6−τ1(6))
+

b2(6)x(6−τ2(6))

1+ x2(6−τ2(6))

=

(
1− 1

4

)
×1+2× x(2)

1+ x2(2)
+

5
8
× x(1)

1+ x2(1)
= 2,

x(8) =
(
1−a(7)

)
x(7)+

b1(7)x(7−τ1(7))

1+ x2(7−τ1(7))
+

b2(7)x(7−τ2(7))

1+ x2(7−τ2(7))

=

(
1− 1

5

)
×2+

1
4
× x(1)

1+ x2(1)
+

3
4
× x(5)

1+ x2(5)
= 2,

and so on (see Figure 1). Certainly, the solutionx is positive and4-periodic satisfying

A =
45
511
< 1 ≤ x(k) ≤ 2 <

95
6
= B

for all k ∈ Z+. Note that the initial pointsϕ(k) (−8 ≤ k ≤ 0) have no periodicity.
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Figure 1: A graph of the solution of (5.1) with (5.2)–(5.4) satisfying the initial condition (5.5)

In Example 1, for the given positive numbersm, n, the coefficientsa, bi and the time
delaysτi (i = 1,2, . . . ,m), we estimated the existence range[A,B] of the positive periodic
solutions of (1.11). Conversely, for the given valueA andB, we can choose the positive
numbersm, n, the coefficientsa, bi and the time delaysτi so that the positive periodic
solutions of (1.11) exist in the range[A,B]. We will explain this situation below.

It is reported that the number of red blood cells per microliter is different depending on
sex and race, even for healthy humans. The lower and upper limits of the measured value
are slightly different depending on health agencies. For example, according to the guide-
lines for clinical examination (JSLM2012) by Japanese Society of Laboratory Medicine,
the standard value of red blood cells is4.1× 106 to 5.3× 106 per 1µℓ for adult males,
3.8× 106 to 4.8× 106 per 1µℓ for adult females. LetA be the lower limit and letB be
the upper limit. In the case of Japanese people, even ifA andB are regarded as3.6×106

and6.0× 106 per1µℓ respectively, there would be no big difference from the reality. Of
course, it is also possible to change the valuesA andB.

It is known that red blood cells start as immature cells in the bone marrow and after
about 7 days of maturation they are released into the bloodstream (see [38, Sect. 1]). For
this reason, we assume that time lag is 7 days; namely,τi(k) = 7 for i = 1,2, . . . ,m and
k = 1,2, . . . ,ω. To simplify hand calculations, we setm = 2 andω = 7.

Example 2. Let A = 3.6×106 andB = 6.0×106. If

a(k) =



0.60 if k = 0,

0.66 if k = 1,

0.60 if k = 2,

0.72 if k = 3,

0.66 if k = 4,

0.60 if k = 5,

0.66 if k = 6,

(5.6)
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b1(k) =



0.8×106 if k = 0,

0.5×106 if k = 1,

0.6×106 if k = 2,

0.8×106 if k = 3,

0.7×106 if k = 4,

0.2×106 if k = 5,

0.6×106 if k = 6,

b2(k) =



2.2×106 if k = 0,

2.8×106 if k = 1,

2.4×106 if k = 2,

2.8×106 if k = 3,

2.6×106 if k = 4,

2.8×106 if k = 5,

2.7×106 if k = 6,

(5.7)

anda(k) = a(k+7), b1(k) = b1(k+7), b2(k) = b2(k+7) for k ∈ Z. Then the equation

∆x(k) = −a(k)x(k)+
b1(k)x(k−7)

1+ x1.02(k−7)
+

b2(k)x(k−7)

1+ x1.02(k−7)
(5.8)

has at least one positive7-periodic solutionx satisfying

A ≤ x(k) ≤ B for k ∈ Z+.

In the case thatn > 1, the production functionfn given by

fn(u) =
u

1+un for u ≥ 0

has the maximum value (
(n−1)n−1

nn

)1/n

atu∗ = n√1/(n−1). Asn approaches 1, the maximum valuefn(u∗) increases and converges
to 1, and the valueu∗ diverges to∞. Hence, we can findn> 1 so thatfn(B)> A/B, because
A/B< 1. In the case thatA = 3.6×106 andB= 6.0×106, we can choosen as1.02. In fact,

f1.02(6.0×106) =
6.0×106

1+ (6.0×106)1.02
= 0.7318 · · · > 0.6 =

A
B
.

Next, we choose aγ satisfying

γ ≥max

{
A

fn(B)
, An+1

}
.

Sincen = 1.02, A = 3.6×106 andB = 6.0×106, we see thatA/ fn(B) = 4,918,872 · · · and
An+1 = 4,868,875 · · · . Hence, we can chooseγ as4.95×106.

It is clear thata, b1 andb2 are7-periodic discrete functions satisfying0 < a(k) < 1,
b1(k) > 0 andb2(k) > 0 for k ∈ Z. Sincea = 0.60, b1 = 0.8×106 andb2 = 2.8×106, it turns
out that

B = 6.0×106 =
1

0.6
(0.8×106+2.8×106) =

1
a

(
b1+b2

)
.

From (5.6) and (5.7), we see that condition (1.13) holds forγ = 4.95, m = 2 andω = 7.
Hence, Theorem 1 ensures that equation (5.8) has at least one positive7-periodic solution
located in the region[A,B] under the assumptions (5.6) and (5.7).
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6. Conclusions

Needless to say, red blood cells that carry nutrients and oxygen to whole body cells
and carry out carbon dioxide and waste products, leucocytes that are responsible for im-
munity related to biological defense, and platelets that work to stop bleeding are extremely
important in vivo tissues. It is well known that abnormality in the number of such blood
cells causes disease and leads to death. However, it is not enough only to know that the
number of blood cells in a healthy organism is within the normal range. It is necessary
to know how the number of blood cells repeats increase and decrease within the normal
range. Hence, it is important not only in mathematics but also in medicine to analyze
periodic dynamic behavior of the number of blood cells.

In general, mathematical hematopoiesis models consists of an extinction part and a
production part concerning blood cells. Mackey and Glass [2] incorporated a time delay
into the production part and proposed two kind of hematopoiesis models according to the
property of the production functions. For convenience, we decided to call these two kind
of hematopoiesis models given by Mackey and Glass as D-type and U-type, respectively,

In this paper, we focused on a hematopoietic model considering periodic seasonal
changes. As Satuéet al. [4], Maeset al. [5] and Fortin and Mackey [6] point out, periodic
seasonal changes greatly affect the hematopoietic process of horses and humans. It is
also well known that in clinical studies, a certain time (time delay) is required for the
process in which hematopoietic stem cells change to mature cells and are released into
the bloodstream (for example, see [33, 34, 35]). According to their clinical studies, time
lags are different depending on the type of blood cell. Since the regulatory mechanism of
the hematopoietic process is thus complicated, it seems difficult to elucidate the dynamics
of blood cells using a single production function. Moreover, it can be said that discrete
models are more suitable than continuous models to investigate the increase and decrease
of the number of blood cells, which are separate entities even if the number is enormous.

Based on these facts and ideas, in order to analyze the dynamics of the hematopoi-
etic process more properly and accurately, the hematopoietic model discussed in this pa-
per was described by a first-order nonlinear difference equation with multiple production
functions having coefficients and time delays being periodic discrete functions. We clar-
ified periodic behavior of the number of mature blood cells by using the continuation
theorem of coincidence degree theory. Our main conclusions can be summarized as fol-
lows:

(i) We obtained a straightforward sufficient condition which guarantees the existence
of positive periodic solutions. It is easy to check whether this sufficient condition
holds or not. In order to confirm that this sufficient condition holds, we have only
to show that the ratio of a variable coefficient of the extinction part to the sum of
variable coefficients of the production part is less than 1.

(ii) A significant advantage of the continuation theorem of coincidence degree theory
that we utilized in this paper is that it is able to determine the region where periodic
solutions located in. For that reason, we were also able to present the existence
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region of positive periodic solutions. As a result, appropriate variable coefficients
of our model can be determined from clinical data.

(iii) From the obtained result, we found that the lower limitA and the upper limitB of
blood cell counts change depending on the selection of the positive numbersm, n,
γ and the variable coefficientsa, bi (i = 1,2, . . . ,m). To be exact, the upper limit
B becomes larger if any of the following holds: (a) the minimum value ofa(k)
(k = 1,2, . . . ,ω) becomes smaller becomes smaller; (b) the maximum value ofbi(k)
(i = 1,2, . . . ,m andk = 1,2, . . . ,ω) becomes larger; (c) the numberm becomes larger.
The lower limitA becomes smaller if any of the following holds: (d) the numberγ
becomes smaller; (e) the numbern approaches 2.

It may be necessary to explain only (e) of (iii). As already mentioned, the production
function fn has the maximum value(

(n−1)n−1

nn

)1/n

.

Since
d
dx

g(x)
def
=

d
dx

(
(x−1)(x−1)/x

x

)
=

(x−1)(x−1)/x

x3
ln(x−1),

the functiong has the minimum vable 1/2 atx = 2.
Although the standard value of white blood cell counts of human vary depending on

age and gender and there is a slight discrepancy depending on each clinical laboratory, it
can be considered that both adult male and female are in the range of 3000 to 90001µℓ.
Outside this range, there is a suspected case of blood disease. For example, in leukemia,
which is a cancer of white blood cells, it is not uncommon for white blood cell counts
to become from several times to ten times than the standard value. Leukemia is divided
into many types. In any leukemia, suddenly or after a certain stage of progression, the im-
mature hematopoietic stem cells stop maturing on the way of differentiation and growth,
leukemia cells having no function continue to increase rapidly. For this reason,the mech-
anism for making normal white blood cells is impaired, and in many cases, the number
of red blood cells and platelets also decrease. Conversely, the reduction of white blood
cell counts have been reported in systemic lupus erythematosus (SLE) and mixed connec-
tive tissue disease (MCTD) which are types of collagen disease, and Sjögren’s syndrome
(SjS).

The above clinical facts can be explained by changing the positive numbersm, n, γ and
the coefficientsa, bi (i = 1,2, . . . ,m) of our hematopoiesis model (1.11), that is, the fact
that genes in blood cells are scratched by some cause in the middle of the hematopoietic
process and it becomes impossible to adjust normal differentiation and maturation can be
interpreted that the positive numbersm, n, γ and the variable coefficientsa, bi have been
changed.
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Appendix

When0 < n ≤ 1, the production functionbu/(1+un) is monotonically increasing. This
means that as blood cells increase, the rate of increase of blood cells also increases. Since
it fails to apply the brakes to increase of blood cells, it seems not suitable as a mathematical
model describing the hematopoietic process. Hence, in our main result, we have only dealt
with the case thatn > 1, in which equation (1.11) has unimodal production functions.
However, from pure mathematical side, it is worth considering the case that0 < n ≤ 1.

Theorem 4. Suppose thata, bi and τi (1 ≤ i ≤ m) are positiveω-periodic. If condition
(1.13) holds, then equation(1.11) with 0 < n ≤ 1 has at least one positiveω-periodic
solution located in the region[C,D], where

C = n
√
γ−1 and D =

n

√
ω

∑m
i=1 b∗i
a

−1,

in whichγ anda are constants given in Theorem1 andb∗i =
(∑ω

k=1 bi(k)
)
/ω for 1 ≤ i ≤ m.

By using Lemma 3, we can show that Theorem 4 holds in the same way as the proof
of Theorem 1. To apply Lemma 3 to the proof of Theorem 4, it is only necessary to show
the following proposition (leave the details to the reader).

Proposition 5. Suppose thata, bi andτi (1 ≤ i ≤ m) are positiveω-periodic. If condition
(1.13)holds, then every positiveω-periodic solutionx of (2.1)with 0 < n ≤ 1 satisfies

C < x < D,

whereC and D are constants given in Theorem4.

PROOF. As in the proof of Proposition 2, we can show that the inequalities (2.3) and (2.6)
hold. Since0 < n ≤ 1, the functionfn defined byfn(u) = u/(1+un) is increasing foru ≥ 0.
Hence, it follows from (2.3) that

x ≤ 1
a

max
1≤k≤ω

 m∑
i=1

bi(k) f (x(k−τi(k)))


≤ f (x)

a
max

1≤k≤ω

 m∑
i=1

bi(k)

 ≤ f (x)
a

m∑
i=1

bi

<
ω f (x)

a

m∑
i=1

b∗i .
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Arranging this inequality, we obtain

x <
n

√
ω

∑m
i=1 b∗i
a

−1 = D.

From (1.13) and (2.6) it turns out that

x =
λ

1−
ω−1∏
r=0

(1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s) fn(x(s−τi(s)))
k1+ω−1∏
r=s+1

(1−λa(r))


≥

λ fn(x)

1−
ω−1∏
r=0

(1−λa(r))

k1+ω−1∑
s=k1

 m∑
i=1

bi(s)
k1+ω−1∏
r=s+1

(1−λa(r))



>
γ fn(x)

1−
ω−1∏
r=0

(1−λa(r))

k1+ω−1∑
s=k1

λa(s)
k1+ω−1∏
r=s+1

(1−λa(r))


>

γ fn(x)

1−
ω−1∏
r=0

(1−λa(r))

1−ω−1∏
r=0

(1−λa(r))

 = γ fn(x).

Hence, we can estimate that
x > n

√
γ−1 =C.

We therefore conclude that
C < x ≤ x(k) < x < D

for all k ∈ Z+. This completes the proof of Proposition 5. □
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