ファイル情報(添付) | |
タイトル |
微分法の1基本公式の証明の教授法について
|
タイトル |
On the Method of Teaching How to Prove a Fundamental Formula of Differentiation
|
タイトル 読み |
ビブンホウ ノ 1 キホン コウシキ ノ ショウメイ ノ キョウジュホウ ニツイテ
|
著者 |
新宮 忠雄
|
収録物名 |
島根農科大学研究報告
|
巻 | 3 |
開始ページ | 125 |
終了ページ | 126 |
収録物識別子 |
ISSN 05598311
|
内容記述 |
その他
Almost every book of differential calculus treats the proof of the fundamental formula
(d/(dx))(x^n) = nx^<n-1> as follows : (1) Using the formula x^n_2 - x^n_1 = (x_2-x_1)(x^<n-1>_2+x^<n-2>_2x_1+・・・+x^<n-1>_1) (without any proof of this formula), or (2)Using the binomial formula. The former method has a defeat, that is, the used formula has no proof in the book, generally. The latter method is quite complete but it needs the binomial formula to be proved. For this purpose we have to teach 'permutation and combination' throughly, although it takes much time and it decreases ordiuary students' interest in mathematics and let them feel weary. To avoid these I advise to use the following metbod : First derive the formulae of differentiation of the sum, the product, and the quotient of two functions and of the composite function.※ Then with the mathematical induction and these formulae the derivative of x^n would be obtained easily without the use of the binomial theorem. ※ If n is limited to be an integer, this is not necessary. |
言語 |
日本語
|
資源タイプ | 紀要論文 |
出版者 |
島根農科大学
The Shimane Agricultural College
|
発行日 | 1955-05-30 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00108241
|
備考 | A,Bを含む |