微分法の1基本公式の証明の教授法について

島根農科大学研究報告 Volume 3 Page 125-126 published_at 1955-05-30
アクセス数 : 1108
ダウンロード数 : 122

今月のアクセス数 : 56
今月のダウンロード数 : 3
File
d0020003n019.pdf 418 KB エンバーゴ : 2002-07-26
Title
微分法の1基本公式の証明の教授法について
Title
On the Method of Teaching How to Prove a Fundamental Formula of Differentiation
Title Transcription
ビブンホウ ノ 1 キホン コウシキ ノ ショウメイ ノ キョウジュホウ ニツイテ
Creator
Singu Tadao
Source Title
島根農科大学研究報告
Volume 3
Start Page 125
End Page 126
Journal Identifire
ISSN 05598311
Descriptions
Almost every book of differential calculus treats the proof of the fundamental formula
(d/(dx))(x^n) = nx^<n-1>
as follows :
(1) Using the formula
x^n_2 - x^n_1 = (x_2-x_1)(x^<n-1>_2+x^<n-2>_2x_1+・・・+x^<n-1>_1)
(without any proof of this formula), or
(2)Using the binomial formula.
The former method has a defeat, that is, the used formula has no proof in the book, generally.
The latter method is quite complete but it needs the binomial formula to be proved. For this purpose we have to teach 'permutation and combination' throughly, although it takes much time and it decreases ordiuary students' interest in mathematics and let them feel weary. To avoid these I advise to use the following metbod :
First derive the formulae of differentiation of the sum, the product, and the quotient of two functions and of the composite function.※ Then with the mathematical induction and these formulae the derivative of x^n would be obtained easily without the use of the binomial theorem.
※ If n is limited to be an integer, this is not necessary.
Language
jpn
Resource Type departmental bulletin paper
Publisher
島根農科大学
The Shimane Agricultural College
Date of Issued 1955-05-30
Access Rights open access
Relation
[NCID] AN00108241
Remark A,Bを含む