位相線形空間における完全完備性について

アクセス数 : 981
ダウンロード数 : 68

今月のアクセス数 : 92
今月のダウンロード数 : 1
ファイル情報(添付)
c0030007r007.pdf 669 KB エンバーゴ : 2002-01-30
タイトル
位相線形空間における完全完備性について
タイトル
On Fully-Completeness in Topological Vector Spaces
タイトル 読み
イソウ センケイ クウカン ニ オケル カンゼン カンビセイ ニツイテ
著者
城市 篤夫
収録物名
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
7
開始ページ 59
終了ページ 64
収録物識別子
ISSN 03709434
内容記述
その他
Let E be a separated locally convex topological vector space and E' be its dual space. E is said to be fully complete provided any linear subspace L of E' is weakly closed in E' whenever L ∩ U° is weakly closed for every neighbourhood U of zero in E. A fully complete space is also called B-complete [3]. E is said to be B_Γ-complete provided any weakly dense subspace L of E' is weakly closed in E' whenever L ∩ U°is weakly closed for every neighbourhood U of zero in E [3]. A. Persson [2] introduced the notions of t-polar and weakly t-polar spaces. They are the spaces E which are obtained by replacing the neighbourhood U by a barrel T in the above definitions of a Bcomplete and a B_Γ-complete spaces respectively.
We shall study some generalizations and some relations of these notions. We introduce new spaces, an 〓-polar and a weakly 〓-polar spaces with 〓 a set of barrels in E. These are the spaces obtained by restricting every barrel T of E to that of 〓 in the definitions of t-polar and weakly t-polar spaces. Therefore, when 〓 is the family of all absolutely convex and closed neighbourhoods of zero (resp. all barrels) in E, an 〓-polar space is a fully complete (resp. t-polar) space and a weakly 〓-polar space is a B_Γ-complete (resp. weakly t-polar) space.
言語
英語
資源タイプ 紀要論文
出版者
島根大学文理学部
The Faculty of Literature and Science, Shimane University
発行日 1974-03-10
アクセス権 オープンアクセス
関連情報
[NCID] AN0010806X