ファイル情報(添付) | |
タイトル |
対称空間の代数的モデルとしての準群(III)
|
タイトル |
On Some Quasigroups of Algebraic Models of Symmetric Spaces(III)
|
タイトル 読み |
タイショウ クウカン ノ ダイスウテキ モデル トシテノ ジュングン 3
|
著者 |
吉川 通彦
|
収録物名 |
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
|
巻 | 9 |
開始ページ | 7 |
終了ページ | 12 |
収録物識別子 |
ISSN 03709434
|
内容記述 |
その他
In this paper, we observe the fact that symmetric loops treated in the previous papers [1] and [2] are in a special class of homogeneous loops of [3]. It is shown that the homogeneous structures on symmetric loops are in one-to-one correspondence to quasigroups of reflection. Following N. Nobusawa [5], we consider abelian quasigroups of reflection and show that they correspond to homogeneous structures of a certain class of abelian groups. We give also an example of finite symmetric loop of 27 elements due to [5] . In conclusion of this series of notes we give some geometric observations on symmetric loops as affine symmetric spaces, when the natural differentiable structures are assumed on them. For this purpose we consider symmetric Lie loops of [3]. Then, by applying the results of [3] and [4], it will be seen that Lie triple systems can be regarded as the tangent algebras of symmetuc Lie loops.
|
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学文理学部
The Faculty of Literature and Science, Shimane University
|
発行日 | 1975-12-20 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN0010806X
|