ファイル情報(添付) | |
タイトル |
生長曲線の検討(第2報) : テイラー級数展開とCrozier式
|
タイトル |
Analysis of Growth Curve(2) : Taylor Series and the Crozier Equation
|
タイトル 読み |
セチョウ キョクセン ノ ケントウ ダイ2ホウ テイラー キュウスウ テンカイ ト CROZIER シキ
|
著者 |
山本 充男
安井 鈞
|
収録物名 |
島根大学農学部研究報告
Bulletin of the Faculty of Agriculture, Shimane University
|
巻 | 17 |
開始ページ | 34 |
終了ページ | 38 |
収録物識別子 |
ISSN 0370940X
|
内容記述 |
その他
The system of growth can be defined mathematically in various ways. Assuming that the system consists of only one measure y, the system is reduced to the single differential equation :
(dy)/(dt) = f(y) where f(y) is the function of y. Let us assume that f(y) can be developed into Taylor series : f(y) = a_0 + a_1y + a_2y_2 + a_3y_3 + . . . .. Retaining three trems, we have : (dy)/(dt) = a_0 + a_1y + a_2y_2 . This equation is almost the same as the Crozier (Crozier, 1926). Moreover, this equation comes to the Mitscherlich (when a_2 = 0) and the Logistic (when a_0 = 0). Denoting the Crozier by (dy)/(dt) = (K_1 + K_2y)(A - y), the solution of the Crozier is : y =( AB exp[(K_1 + K_2A)t] - K_1)/(B exp[(K_1 + K_2A)t] + K_2) where A. B. K_1 and K_2 are constants. To examine the applicability of the Crozier equation, it was applied to the observed height growth. The Crozier showed a good fit to the growth not only with a clear inflection but also without one, as compared with the Mitscherlich, the Logistic and the Gompertz. The applicability of the Crozier equation in the growthcurve- fitting was recognized. |
言語 |
日本語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学農学部
Shimane University, Faculty of Agriculture
|
発行日 | 1983-12-20 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00108015
|