減反率と直径生長の関係 : 第1報 新しい減反率モデルの誘導

島根大学農学部研究報告 Volume 15 Page 42-46 published_at 1981-12-15
アクセス数 : 1111
ダウンロード数 : 97

今月のアクセス数 : 75
今月のダウンロード数 : 2
File
d0030015n007.pdf 1.01 MB エンバーゴ : 2001-10-08
Title
減反率と直径生長の関係 : 第1報 新しい減反率モデルの誘導
Title
Relation between "Gentan Probability" and "Diameter Growth"(1) : Derivation of new "Gentan Probability" Models
Title Transcription
ゲンタンリツ ト チョッケイ セイチョウ ノ カンケイ ダイ1ポウ アタラシイ ゲンタンリツ モデル ノ ユウドウ
Creator
Yamamoto Mitsuo
Source Title
島根大学農学部研究報告
Bulletin of the Faculty of Agriculture, Shimane University
Volume 15
Start Page 42
End Page 46
Journal Identifire
ISSN 0370940X
Descriptions
1. "Gentan probability" q(j) is the probability that a initial forest will be reserved till j age-class and will be cut in the same j age-class. The probability q(j) is the life span distribution of forest stands in a district. In almost all countries, at present, each individual owner of forests is treating his forests of his own will. So q(j) is considered as a kind of waiting time up to the first replacement. Now we assume that a forest stand will be harvested when the mean diameter is k mm wide. q(j) is considered as the probability that the tree becames k mm across at j age-class. And it imparts a new meaning to q(j), as a waiting time untill the tree becames k mm across. Therefore, we can interpret "diameter growth" and "Gentan probability" in the same model, such as Fig. 1.
2. Applying the Markov Chain theories, the auther derived two formulas which give the life span distribution of forest stands as well as Suzuki's one*.
* F_k(t)=(M<(Mt)>^^^<k-1>)/((k-1)!) exp[-Mt]
F_k(t)=(N<(1-e^<-ct>)>^^^<k-1>/((k-1)!) exp[-N(1-e^<-ct>)]Nce^<-ct>
F_k(t)=(N!c)/(k-1)!(N-k)i <(e^<-ct>)>^^^<N-k+1><(1-e^<-ct>)>^^^<k-1>
Language
jpn
Resource Type departmental bulletin paper
Publisher
島根大学農学部
Shimane University, Faculty of Agriculture
Date of Issued 1981-12-15
Access Rights open access
Relation
[NCID] AN00108015