ファイル情報(添付) | |
タイトル |
減反率と直径生長の関係 : 第1報 新しい減反率モデルの誘導
|
タイトル |
Relation between "Gentan Probability" and "Diameter Growth"(1) : Derivation of new "Gentan Probability" Models
|
タイトル 読み |
ゲンタンリツ ト チョッケイ セイチョウ ノ カンケイ ダイ1ポウ アタラシイ ゲンタンリツ モデル ノ ユウドウ
|
著者 |
山本 充男
|
収録物名 |
島根大学農学部研究報告
Bulletin of the Faculty of Agriculture, Shimane University
|
巻 | 15 |
開始ページ | 42 |
終了ページ | 46 |
収録物識別子 |
ISSN 0370940X
|
内容記述 |
その他
1. "Gentan probability" q(j) is the probability that a initial forest will be reserved till j age-class and will be cut in the same j age-class. The probability q(j) is the life span distribution of forest stands in a district. In almost all countries, at present, each individual owner of forests is treating his forests of his own will. So q(j) is considered as a kind of waiting time up to the first replacement. Now we assume that a forest stand will be harvested when the mean diameter is k mm wide. q(j) is considered as the probability that the tree becames k mm across at j age-class. And it imparts a new meaning to q(j), as a waiting time untill the tree becames k mm across. Therefore, we can interpret "diameter growth" and "Gentan probability" in the same model, such as Fig. 1.
2. Applying the Markov Chain theories, the auther derived two formulas which give the life span distribution of forest stands as well as Suzuki's one*. * F_k(t)=(M<(Mt)>^^^<k-1>)/((k-1)!) exp[-Mt] F_k(t)=(N<(1-e^<-ct>)>^^^<k-1>/((k-1)!) exp[-N(1-e^<-ct>)]Nce^<-ct> F_k(t)=(N!c)/(k-1)!(N-k)i <(e^<-ct>)>^^^<N-k+1><(1-e^<-ct>)>^^^<k-1> |
言語 |
日本語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学農学部
Shimane University, Faculty of Agriculture
|
発行日 | 1981-12-15 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00108015
|