アクセス数 : 1173 件
ダウンロード数 : 53 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.24568/55046
島根大学総合理工学部紀要.シリーズB Volume 57
published_at 2024
WELL-POSEDNESS OF QUADRATIC HARTREE TYPE EQUATIONS BELOW L2
KAMEI RYOSUKE
Descriptions
This paper studies the Cauchy problem for the nonlinear Schr¨odinger equation i∂tu − ∂2 xu = f(u) in one space dimension. The nonlinear interaction f(u) is a linear combination of (V ∗x u)u, (V ∗x ¯u)u, (V ∗x u)¯u and (V ∗x ¯u)¯u, where V (x) is a locally integrable function whose Fourier transform satisfies | ˆ V (ξ)| ≲ ⟨ξ⟩−m for some m ≥ 0. The Cauchy problem is well-posed in Hs for s > −(m/2+1/4); furthermore, if f(u) contains only the first and the last types of nonlinear terms, then the Cauchy problem is well-posed for s > −(m/2+3/4). The proof is based on bilinear estimates in Xs,b spaces.
About This Article
Doi
https://doi.org/10.24568/55046
Pages
Other Article
PP. 1 - 25