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Abstract. This paper studies the Cauchy problem for the nonlinear Schrödinger
equation i∂tu − ∂2

xu = f(u) in one space dimension. The nonlinear interaction
f(u) is a linear combination of (V ∗x u)u, (V ∗x ū)u, (V ∗x u)ū and (V ∗x ū)ū,
where V (x) is a locally integrable function whose Fourier transform satisfies

|V̂ (ξ)| ≲ ⟨ξ⟩−m for some m ≥ 0. The Cauchy problem is well-posed in Hs for
s > −(m/2+1/4); furthermore, if f(u) contains only the first and the last types
of nonlinear terms, then the Cauchy problem is well-posed for s > −(m/2+3/4).
The proof is based on bilinear estimates in Xs,b spaces.

1. Introduction

In this paper, we consider the Cauchy problem for the nonlinear Schrödinger
equation

(1) i∂tu− ∂2xu = f(u), u(·, 0) = u0,

where u : Rx × Rt → C, and the nonlinear interaction f(u) is defined by

(2) f(u) =
4∑

j=1

λjfj(u) = λ1(V ∗x u)u+ λ2(V ∗x ū)u+ λ3(V ∗x u)ū+ λ4(V ∗x ū)ū

with λj ∈ C, 1 ≤ j ≤ 4, V = V (x), and ∗x means the convolution with respect to
x. We study the well-posedness of (1) below L2(R), namely in the Sobolev space
Hs(R) with s < 0.

There is a lot of literature on the solvability and asymptotic behaviour of the
Hartree equation

(3) i∂tu−∆xu = λ(V ∗x |u|2)u, u(·, 0) = u0

with (x, t) ∈ Rn+1, V (x) = |x|−γ, 0 < γ < n and λ ∈ C. The equation (3)
is scaling-invariant in the homogeneous Sobolev space Ḣs(Rn) with critical index
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sc = γ/2 − 1, and (3) is known to be locally well-posed in Hs(Rn) under the
assumption s ≥ (sc)+ ≡ max{0; sc}, see e.g. Ginibre–Velo [6], Hayashi–Ozawa [7]
and Hirata [8]; see also Cazenave [3] and references therein. On the contrary, apart
from Cho–Hwang–Ozawa [4], there are few results on the well-posedness of (3) for
sc ≤ s < 0. In [4], under the assumption n ≥ 3, 3/2 < γ < 2, they proved that for
u0 ∈ Ḣsc

rad(Rn) small enough, there exists a unique solution u ∈ Cb(R; Ḣsc
rad(Rn))

which scatters in Ḣsc
rad(Rn) as t → ±∞. Here the subscript b means the space

of bounded functions, and Ḣsc
rad(Rn) denotes the homogeneous Sobolev space for

radially symmetric functions. They also obtained an analogous result for nonradial
case, but they need some positive regularity for spherical coordinates.

It would be very interesting to study well-posedness of (3) in Sobolev spaces of
negative order. However, it seems quite difficult to estimate cubic terms in negative
order Sobolev spaces. Therefore, as a first step, we will consider the equation (1)
with quadratic nonlinear terms instead.

The well-posedness of (1) in Hs(R) with f(u) replaced by

(4) fp(u) = µ1u
2 + µ2|u|2 + µ3ū

2,

namely the case of quadratic power nonlinearity, has been extensively studied. In
this case, the critical exponent in Ḣs(R) is sc = −3/2. Tsutsumi [17] and Kato [9]
proved that the Cauchy problem (1)–(4) is locally well-posed in L2(R); see also
Cazenave [3]. For negative order Sobolev spaces, Kenig–Ponce–Vega [12] proved
the local well-posedness for (i) s > −3/4 with µ2 = 0, or (ii) s > −1/4, by the
method of Fourier restriction norm initiated by Bourgain [2]. The result in case (i)
was generalized for s ≥ −1 by Bejenaru–Tao [1] and Kishimoto [13,14].

We need the free Schrödinger group U(t) = exp(−it∂2x), and the associated

retarded potential (U ∗R f)(t) =
∫ t

0
U(t − t′)f(t′) dt′. Let ψ ∈ C∞

0 (R) be an even
function with 0 ≤ ψ ≤ 1, suppψ ⊂ [−2, 2] and ψ(t) = 1 for t ∈ [−1, 1]. For
0 < T < 1, we set ψT (t) = ψ(t/T ). We convert (1) into the following integral
equation localized in time:

(5) u(t) = ψ(t)U(t)u0 − iψT (t)(U ∗R f(u))(t).

At least formally, (5) is equivalent to (1) for t ∈ [−T, T ].
In order to state the main theorem in this paper, we define the space Xs,b,

s, b ∈ R, as the completion of S (R2) with respect to the norm

∥u∥Xs,b ≡ ∥⟨ξ⟩s⟨τ − ξ2⟩bû(ξ, τ)∥L2
τ (L

2
ξ)
=

(∫∫
R2

⟨ξ⟩2s⟨τ − ξ2⟩2b|û(ξ, τ)|2 dξdτ
)1/2

,

where ⟨ · ⟩ = (1+ | · |2)1/2, and û(ξ, τ) is the Fourier transform of u = u(x, t) defined
by

û(ξ, τ) = Fx,tu(ξ, τ) =

∫∫
R2

u(x, t)e−i(xξ+tτ)dxdt.

We note that ∥u∥Xs,b = ∥U(−·)u∥Hb
t (H

s
x)
. If b > 1/2, then by the Sobolev inequality,

we have the continuous inclusion Xs,b ⊂ Cb(R;Hs(R)).
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Theorem 1.1. Let m ≥ 0. Let V ∈ L1
loc(R) satisfy the estimate

(6) |V̂ (ξ)| ≤ C⟨ξ⟩−m.

Let s ∈ R satisfy (i) s > −(m/2 + 3/4) if (λ2, λ3) = (0, 0); (ii) s > −(m/2 + 1/4)
if (λ2, λ3) ̸= (0, 0). Then, for any u0 ∈ Hs(R), there exist b > 1/2 and 0 < T < 1
such that (5) with f(u) defined by (2) has a unique solution u ∈ Xs,b.

Remark 1.2. The result by Kenig–Ponce–Vega [12] corresponds to the case V (x) =
δ(x), namely m = 0. The estimate (6) means that V ∗x is a smoothing operator
of order m, and the theorem shows that the effect of V ∗x gains regularity of order
m/2 in the well-posedness result.

This paper is organized as follows. In §2, we summarize some basic estimates
which are repeatedly used throughout the paper. In §3, we prove Theorem 1.1 by
the contraction mapping principle. The key ingredients of the proof are bilinear
estimates of f(u) in Xs,b-space. In §§4–6, we derive bilinear estimates for fj(u),
1 ≤ j ≤ 4.

2. Preliminaries

Lemma 2.1. Let 0 < c < 1/2 < b, α ∈ R and β > 0. The following estimates
hold:

(i)

∫ ∞

−∞

dx

⟨x⟩2b|x− α|1/2
≲ ⟨α⟩−1/2; (ii)

∫ β

−β

dx

⟨x⟩2c|x− α|1/2
≲ ⟨β⟩1−2c⟨α⟩−1/2.

Proof. Since these estimates are elementary, we omit the proof. □
As stated in §1, let U(t) = exp(−it∂2x) and (U ∗R f)(t) =

∫ t

0
U(t− t′)f(t′) dt′. Let

ψ ∈ C∞
0 (R) be an even function with 0 ≤ ψ ≤ 1, suppψ ⊂ [−2, 2] and ψ(t) = 1 for

t ∈ [−1, 1]. For 0 < T < 1, we set ψT (t) = ψ(t/T ). We have the following linear
estimate:

Lemma 2.2. Let s ∈ R and let b, c ≥ 0 satisfy b+ c ≤ 1. Then, the estimate

∥ψT (U ∗R f)∥Xs,b ≲ T 1−b−c∥f∥Xs,−c

holds for f ∈ Xs,−c.

Proof. See e.g. [5, Lemma 2.1], [11, Lemma 3.3] or [15, Lemma 7.10]. □
Lemma 2.3. Let b > 1/2. The estimate

(7)

∫∫
R2

|uu1u2| dxdt ≲ ∥u∥L2
t (L

2
x)
∥u1∥X0,b∥u2∥X0,b

holds for any u ∈ L2
t (L

2
x) and uj ∈ X0,b, j = 1, 2.

Proof. See [12, Lemma 2.3]. For completeness we shall introduce an alternative
proof in terms of Strichartz estimates (see [5, Lemmas 2.3–2.4]). By Hölder’s
inequality, the left-hand side of (7) is bounded by

∥u∥L2
t (L

2
x)
∥u1∥L4

t (L
2
x)
∥u2∥L4

t (L
∞
x ).
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It follows from the Minkowski and Sobolev inequalities together with the unitarity
of U(t) that ∥u1∥L4

t (L
2
x)

≲ ∥U(−·)u1∥L2
x(L

4
t )

≲ ∥U(−·)u1∥L2
x(H

1/4
t )

= ∥u1∥X0,1/4 . On

the other hand, from the representation u(t) =
∫
eitτU(t)(FtU(−·)u2)(τ) dτ

and the Strichartz estimate [3, 10, 16], we obtain ∥u2∥L4
t (L

∞
x ) ≲∫

∥(FtU(−·)u2)(τ)∥L2
x
dτ ≲ ∥u2∥X0,b . Combining these estimates, we ob-

tain (7). □

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.

Proof. Let f(u1, u2) =
∑4

j=1 λjfj(u1, u2) be the quadratic form associated with the

nonlinear inter interaction f(u) defined by (2). We can show that f(u1, u2) satisfies
the estimate

(8) ∥f(u1, u2)∥Xs,−c ≤ C∥u1∥Xs,b∥u2∥Xs,b

for some b, c with 0 < c < 1/2 < b < 1 and with b+c < 1. In fact, if (λ2, λ3) = (0, 0),
then for s = −ρ > −(m/2+3/4), we first choose c < 1/2 satisfying the assumptions
of Propositions 4.1 and 6.1; for such a number c, we next choose b such that
1/2 < b < 1 − c. Then, the inequalities (9) and (19) respectively hold for f1
and f4 by Propositions 4.1 and 6.1. If (λ2, λ3) ̸= (0, 0), we should further assume
s > −(m/2 + 1/4) so that we can choose numbers b, c with 0 < c < 1/2 < b < 1
satisfying the assumptions of Propositions 5.1 and 5.2. Then, the inequalities (15)
and (18) respectively hold for f2 and f3. These inequalities all together yield (8).
The proofs of these propositions themselves are given in §§4–6.
For R > 0, we define the set BR = {u ∈ Xs,b : ∥u∥Xs,b ≤ R} equipped with the

metric d(u1, u2) = ∥u1 − u2∥Xs,b . Clearly, (BR, d) is a complete metric space. For
suitable positive numbers R and T , we use a contraction method to find a fixed
point of the mapping

Φ(u) = ψ(t)U(t)u0 − iψT (t)(U ∗R f(u, u))(t),

which solves (5). By definition, we immediately show

∥ψ(t)U(t)u0∥Xs,b = ∥ψ(t)u0∥Hb
t (H

s
x)
≤ C∥u0∥Hs .

Therefore, by Lemma 2.2 together with (8), we obtain

∥Φ(u)∥Xs,b ≤ C∥u0∥Hs + CT 1−b−c∥u∥2Xs,b ≤ C∥u0∥Hs + CT 1−b−cR2

for u ∈ BR. Similarly, we obtain ∥Φ(u1) − Φ(u2)∥Xs,b ≤ CRT 1−b−c∥u1 − u2∥Xs,b .
Choosing R and T such that C∥u0∥Hs ≤ R/2 and CRT 1−b−c ≤ 1/2, we see that Φ
is a contraction mapping from BR into itself. Thus, it follows from the contraction
mapping principle that Φ has a unique fixed point in BR, thereby obtaining the
theorem. □
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4. Bilinear estimates for f1(u)

In this section we consider the nonlinear term f1(u) = (V ∗xu)u, or more generally
the quadratic form f1(u1, u2) = (V ∗xu1)u2. Let s = −ρ < 0, and 0 < c < 1/2 < b <
1. Under suitable assumptions, we shall derive the following estimate of f1(u1, u2)
in Xs,b:

(9) ∥f1(u1, u2)∥Xs,−c ≲ ∥u1∥Xs,b∥u2∥Xs,b .

To prove (9), we use a duality argument. The Fourier transform of f1 is

f̂1(ζ) =

∫
V̂ (ξ1)û1(ζ1)û2(ζ − ζ1) dζ1 =

∫
V̂ (ξ1)⟨ξ1⟩ρ⟨ξ2⟩ρv̂1(ζ1)v̂2(ζ2)

⟨σ1⟩b⟨σ2⟩b
dζ1.

Here, we write ζ = (ξ, τ), σ = τ − ξ2, and ζj = (ξj, τj), σj = τj − ξ2j , j = 1, 2
for short, with taking the relation ζ = ζ1 + ζ2 into account. We also set v̂j(ζj) =

⟨ξj⟩−ρ⟨σj⟩bû(ζj). Multiplying ⟨ξ⟩−ρ⟨σ⟩−cv̂(ζ) by f̂1(ζ) and integrating with respect
to ζ, we obtain∫

⟨ξ⟩−ρ⟨σ⟩−cv̂(ζ)f̂1(ζ) dζ =

∫∫
K(ξ1, ξ2)v̂(ζ)v̂1(ζ1)v̂2(ζ2)

⟨σ⟩c⟨σ1⟩b⟨σ2⟩b
dζdζ1 ≡ S,

where v is an arbitrary element of L2(R2) and K(ξ1, ξ2) = V̂ (ξ1)⟨ξ1⟩ρ⟨ξ2⟩ρ⟨ξ⟩−ρ.
Then, the estimate (9) is equivalent to

(10) |S| ≲ ∥v∥L2∥v1∥L2∥v2∥L2 .

Proposition 4.1. Let m ≥ 0. Let V ∈ L1
loc(R) satisfy (6). Let 0 < c < 1/2 < b

and 0 ≤ ρ ≤ min{m/2 + c+ 1/4;m+ 2c}. Then the estimate (9) holds.

Proof. We shall prove (10). If min{|ξ1|, |ξ2|} ≤ 1, then we have ⟨ξ1⟩ρ⟨ξ2⟩ρ⟨ξ⟩−ρ ≲ 1,
so that the contribution S0 of this region to S is estimated as

|S0| ≲
∫∫

|v̂(ζ)v̂1(ζ1)v̂2(ζ2)|
⟨σ⟩c⟨σ1⟩b⟨σ2⟩b

dζdζ1 ≲
∫∫

|w̄w1w2| dxdt,

where w = F−1⟨σ⟩−c|v̂(ζ)|, and wj = F−1⟨σj⟩−b|v̂(ζj)|, j = 1, 2. From Lemma 2.3,
we obtain |S0| ≲ ∥w∥L2

x,t
∥w1∥X0,b∥w2∥X0,b ≲ ∥v∥L2∥v1∥L2∥v2∥L2 . Hence, we may

assume |ξ1|, |ξ2| ≥ 1. By the energy conservation

σ1 + σ2 − σ = (τ1 − ξ21) + (τ2 − ξ22)− (τ − ξ2) = 2ξ1ξ2,

we have 2|ξ1ξ2| ≤ 3max{|σ|, |σ1|, |σ2|}. We further split the integration region into
subregions according to which of |σ|, |σ1| and |σ2| is the largest.

Case 1. Let |σ1|, |σ2| ≤ |σ|. We estimate the contribution S1 of this region to S.
For this purpose we set

I1(ζ) ≡
∫
|σ1|,|σ2|≤|σ|

|K(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζ1 =

∫
|σ1|≤|σ|

dσ1

∫
A1

|K(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ1
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with A1 = A1(ζ, σ1) = {ξ1 ∈ R : |σ2| ≤ |σ|}. Then, it follows from the Schwarz
inequality that

|S1|2 ≤
∫∫

|σ1|,|σ2|≤|σ|

|K(ξ1, ξ2)|2|v̂(ζ)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζdζ1

∫∫
|v̂1(ζ1)|2|v̂2(ζ2)|2 dζdζ1

≲
{
sup
ζ
I1(ζ)

}
∥v∥2L2∥v1∥2L2∥v2∥2L2 ,(11)

so that we should prove supζ I1(ζ) <∞. For fixed ζ and σ1, we change the variable
from ξ1 to σ2 = σ − σ1 + 2ξ1ξ2. Then we have the relations dσ2 = 2(ξ2 − ξ1)dξ1,
and (ξ2 − ξ1)

2 = ξ2 − 4ξ1ξ2 = ξ2 − 2(σ1 + σ2 − σ). Therefore,

I1(ζ) ≲
∫
|σ1|≤|σ|

dσ1

∫
|σ2|≤|σ|

|K(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b|ξ2 − 2(σ1 + σ2 − σ)|1/2
dσ2.

To estimate |K(ξ1, ξ2)|2, we further split the integration region into the following
three subregions:

(i) 1 ≤ |ξ| ≲ |ξ1| ∼ |ξ2|, so that |K(ξ1, ξ2)|2 ≲ ⟨ξ⟩−2ρ⟨ξ1⟩4ρ−2m ∼
⟨ξ⟩−2ρ⟨ξ1ξ2⟩2ρ−m;

(ii) 1 ≤ |ξ1| ≲ |ξ| ∼ |ξ2|, so that |K(ξ1, ξ2)|2 ≲ ⟨ξ1⟩2(ρ−m) ≲ ⟨ξ1ξ2⟩(ρ−m)+ ;
(iii) 1 ≤ |ξ2| ≲ |ξ| ∼ |ξ1|, so that |K(ξ1, ξ2)|2 ≲ ⟨ξ1⟩−2m⟨ξ2⟩2ρ ≲ ⟨ξ1ξ2⟩(ρ−m)+ .

From the estimate |ξ1ξ2| ≲ |σ|, we see

(12) |K(ξ1, ξ2)|2 ≲
{
⟨σ⟩(2ρ−m)+⟨ξ⟩−2ρ, |ξ| ≲ |ξ1| ∼ |ξ2|,
⟨σ⟩(ρ−m)+ , |ξ1|, |ξ2| ≲ |ξ|.

On the other hand, from Lemma 2.1 (i), we see∫
|σ1|≤|σ|

dσ1

∫
|σ2|≤|σ|

dσ2
⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b|ξ2 − 2(σ1 + σ2 − σ)|1/2

≲
∫
|σ1|≤|σ|

dσ1
⟨σ⟩2c⟨σ1⟩2b⟨ξ2 − 2(σ1 − σ)⟩1/2

≲ 1

⟨σ⟩2c⟨ξ2 + 2σ⟩1/2
.

Therefore, we obtain

I1(ζ) ≲ max

{
⟨σ⟩(2ρ−m)+−2c

⟨ξ2⟩ρ⟨ξ2 + 2σ⟩1/2
;
⟨σ⟩(ρ−m)+−2c

⟨ξ2 + 2σ⟩1/2

}
≲ 1

provided that 0 ≤ ρ ≤ min{m/2 + c+ 1/4;m+ 2c}.
Case 2. Let |σ|, |σ2| ≤ |σ1|. To estimate the contribution S2 of this region to S,

we set

I2(ζ1) ≡
∫
|σ|≤|σ1|

dσ

∫
A2

|K(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ

with A2 = A2(ζ1, σ) = {ξ ∈ R : |σ2| ≤ |σ1|}. If we obtain supζ1 I2(ζ1) < ∞, then
we can estimate the contribution S2 of this region to S as in (11), with ζ and
ζ1 interchanged. For fixed ζ1 and σ, we change the variable from ξ to σ2. Since
dσ2 = 2ξ1dξ, taking |ξ1| ≥ 1 into account, we have

I2(ζ1) ≲
∫
|σ|≤|σ1|

dσ

∫
|σ2|≤|σ1|

|K(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ2
⟨ξ1⟩

.
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As in Case 1, we have the estimate

(13)
|K(ξ1, ξ2)|2

⟨ξ1⟩
≲

{
⟨σ1⟩(2ρ−m−1/2)+⟨ξ⟩−2ρ, |ξ| ≲ |ξ1| ∼ |ξ2|,
⟨σ1⟩(ρ−m−1/2)+ , |ξ1|, |ξ2| ≲ |ξ|.

On the other hand, by computation we see

(14)

∫
|σ|≤|σ1|

dσ

∫
|σ2|≤|σ1|

dσ2
⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b

≲ ⟨σ1⟩1−2(b+c).

Therefore, we see I2(ζ1) ≲ ⟨σ1⟩(2ρ−m−1/2)++1−2(b+c). Thus, we obtain supζ1 I2(ζ1) <
∞ provided that ρ ≤ m/2− 1/4 + b+ c.
Case 3. Let |σ|, |σ1| ≤ |σ2|. We can easily show that |K(ξ1, ξ2)|2/⟨ξ2⟩ is bounded

by the right-hand side of (13). Therefore, changing the variables ζ1 and ζ2, we can
treat this case in the same way as Case 2. □

5. Bilinear estimates for f2(u) and f3(u)

In this section we first consider the nonlinear term f2(u) = (V ∗x ū)u, or more
generally the quadratic form f2(u1, u2) = (V ∗x ū1)u2. We shall derive the following
estimate

(15) ∥f2(u1, u2)∥Xs,−c ≲ ∥u1∥Xs,b∥u2∥Xs,b

for suitable s = −ρ < 0 and 0 < c < 1/2 < b < 1. To prove (15), we again use a
duality argument. The Fourier transform of f2 is

f̂2(ζ) =

∫
V̂ (−ξ1)û1(ζ1)û2(ζ + ζ1) dζ1,

so that we should estimate the cubic form

S∗ ≡
∫∫

K∗(ξ1, ξ2)v̂(ζ)v̂1(ζ1)v̂2(ζ2)

⟨σ⟩c⟨σ1⟩b⟨σ2⟩b
dζdζ1.

Here, v is an arbitrary element of L2(R2), the symbols ζ, σ, ζj, σj, j = 1, 2 are
similar to those in §4, but they should satisfy ζ = −ζ1 + ζ2 instead of ζ = ζ1 + ζ2,
and the kernel K(ξ1, ξ2) in S is replaced with K∗(ξ1, ξ2) = V̂ (−ξ1)⟨ξ1⟩ρ⟨ξ2⟩ρ⟨ξ⟩−ρ.
Then, the estimate (15) is equivalent to

(16) |S∗| ≲ ∥v∥L2∥v1∥L2∥v2∥L2 .

Proposition 5.1. Let m ≥ 0. Let V ∈ L1
loc(R) satisfy (6). Let 0 < c < 1/2 < b

and 0 ≤ ρ ≤ (m+ c)/2. Then the estimate (15) holds.

Proof. We shall prove (16). As in the proof of Proposition 4.1, we may assume
|ξ1|, |ξ2| ≥ 1. We split the integration region of S∗ into subregions and estimate
the contribution of each subregion separately. We first consider the case |ξ| ≤ 1.
We set

I∗0 (ζ1) ≡
∫∫

|ξ|≤1≤|ξ1|,|ξ2|

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζ.

If we obtain supζ1 I
∗
0 (ζ1) <∞, then we can estimate the contribution of this region

to S∗ as in (11). Since |ξ| ≤ 1, we have |ξ1| ∼ |ξ2|, so that |K∗(ξ1, ξ2)|2 ≲ ⟨ξ1⟩4ρ−2m.
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For fixed ζ1, we change the variables from ζ = (ξ, τ) to (σ, σ2). Then we have
dσdσ2 = 2|ξ1|dξdτ . By the energy conservation

(17) σ + σ1 − σ2 = (τ − ξ2) + (τ1 − ξ21)− (τ2 − ξ22) = 2ξξ1

together with |ξ| ≤ 1, we have |σ − σ2| ≤ |σ1|+ 2|ξ1|. Therefore,

I∗0 (ζ1) ≲
∫
dσ2

∫
|σ−σ2|≤|σ1|+2|ξ1|

⟨ξ1⟩4ρ−2m−1

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ.

Since ⟨σ⟩−2c is positive, even and decreasing for positive σ, the integral above
becomes greater if we replace the interval of integration for σ with |σ| ≤ |σ1|+2|ξ1|.
Hence we obtain

I∗0 (ζ1) ≲
∫
dσ2

∫
|σ|≤|σ1|+2|ξ1|

⟨ξ1⟩4ρ−2m−1

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ

≲ ⟨ξ1⟩4ρ−2m−1⟨σ1⟩−2b⟨|σ1|+ 2|ξ1|⟩1−2c.

If ρ ≤ (m + c)/2, then the right-hand side is bounded, so that supζ1 I
∗
0 (ζ1) < ∞.

Thus, in what follows we may assume |ξ|, |ξ1|, |ξ2| ≥ 1. By (17), we have 2|ξξ1| ≤
3max{|σ1|, |σ2|, |σ|}. We split the integration region into subregions according to
which of |σ|, |σ1| and |σ2| is the largest.

Case 1. Let |σ1|, |σ2| ≤ |σ|. We estimate the contribution S∗
1 of this region to

S∗. We set

I∗1 (ζ) ≡
∫
|σ1|,|σ2|≤|σ|

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζ1 =

∫
|σ1|≤|σ|

dσ1

∫
B1

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ1

with B1 = B1(ζ, σ1) = {ξ1 ∈ R : |σ2| ≤ |σ|}. It suffices to show supζ I
∗
1 (ζ) < ∞.

To this end, for fixed ζ and σ1, we change the variable from ξ1 to σ2. Since
dσ2 = −2ξdξ1, taking |ξ| ≥ 1 into account, we have

I∗1 (ζ) ≲
∫
|σ1|≤|σ|

dσ1

∫
|σ2|≤|σ|

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ2
⟨ξ⟩

.

As in the proof of Proposition 4.1, Case 1, we split the integration region into
subregions to estimate |K∗(ξ1, ξ2)|2, but in this case we use |ξj| ≲ |ξξj| ≲ |σ|,
j = 1, 2. Then we obtain

|K∗(ξ1, ξ2)|2

⟨ξ⟩
≲

{
⟨σ⟩(4ρ−2m)+⟨ξ⟩−2ρ−1, |ξ| ≲ |ξ1| ∼ |ξ2|,
⟨σ⟩2(ρ−m)+−1/2, |ξ1|, |ξ2| ≲ |ξ|

≲ ⟨σ⟩(4ρ−2m)+ .

Hence, by computation we obtain I∗1 (ζ) ≲ ⟨σ⟩(4ρ−2m)+−2c, so that supζ I1(ζ) < ∞
if ρ ≤ (m+ c)/2.

Case 2. Let |σ|, |σ2| ≤ |σ1|. To estimate the contribution S∗
2 of this region to S∗,

we set

I∗2 (ζ1) ≡
∫
|σ|≤|σ1|

dσ

∫
B2

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ
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with B2 = B2(ζ1, σ) = {ξ ∈ R : |σ2| ≤ |σ1|}. It suffices to show supζ1 I
∗
2 (ζ1) < ∞.

The estimate for I∗2 (ζ1) is similar to that for I∗1 (ζ) in Case 1. Indeed, changing the
variable from ξ to σ2, we obtain

I∗2 (ζ1) ≲
∫
|σ|≤|σ1|

dσ

∫
|σ2|≤|σ1|

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ2
⟨ξ1⟩

.

We can easily obtain the estimate |K∗(ξ1, ξ2)|2/⟨ξ1⟩ ≲ ⟨σ1⟩(4ρ−2m−1)+ . Applying
this estimate to the integral above, we obtain I∗2 (ζ1) ≲ ⟨σ1⟩(4ρ−2m−1)++1−2(b+c).
Hence we can obtain supζ1 I2(ζ1) <∞ provided that ρ ≤ (m+ b+ c)/2.
Case 3. Let |σ|, |σ1| ≤ |σ2|. We estimate the contribution S∗

3 of this region to
S∗. We set

I∗3 (ζ2) ≡
∫
|σ|≤|σ2|

dσ

∫
B3

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ

with B3 = B3(ζ2, σ) = {ξ ∈ R : |σ1| ≤ |σ2|}. It suffices to show supζ2 I
∗
3 (ζ2) < ∞.

For fixed ζ2 and σ, we change the variable from ξ to σ1. We have the relations
dσ1 = 2(ξ1 − ξ)dξ, and (ξ1 − ξ)2 = ξ22 − 4ξξ1 = ξ22 − 2(σ + σ1 − σ2). Therefore, it
follow that

I∗3 (ζ2) ≲
∫
|σ|≤|σ2|

dσ

∫
|σ1|≤|σ2|

|K∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b|ξ22 − 2(σ + σ1 − σ2)|1/2
dσ1.

As in the previous cases, we have the estimate |K∗(ξ1, ξ2)|2 ≲ ⟨σ2⟩(4ρ−2m)+ . There-
fore, it follows from Lemma 2.1 (i), (ii) that

I∗3 (ζ2) ≲ ⟨σ2⟩(4ρ−2m)++1−2(b+c)⟨ξ22 + 2σ2⟩−1/2.

Hence, we can obtain supζ I
∗
3 (ζ) <∞ provided that ρ ≤ (m+ b+ c)/2− 1/4. □

We next consider the quadratic form f3(u1, u2) = (V ∗x u1)ū2 associated with
f3(u). We have the following:

Proposition 5.2. Under the same assumption as Proposition 5.1, the following
estimate holds:

(18) ∥f3(u1, u2)∥Xs,−c ≲ ∥u1∥Xs,b∥u2∥Xs,b

Proof. We consider the cubic form

S̃∗ ≡
∫∫

K̃∗(ξ1, ξ2)v̂(ζ)v̂1(ζ1)v̂2(ζ2)

⟨σ⟩c⟨σ1⟩b⟨σ2⟩b
dζdζ2.

Here, the symbols ζ, ζj, σ, σj, j = 1, 2 are defined as in S∗, but they should satisfy
ζ = ζ1− ζ2 instead of ζ = −ζ1+ ζ2, and the kernel K∗(ξ1, ξ2) in S

∗ is replaced with

K̃∗(ξ1, ξ2) = V̂ (ξ1)⟨ξ1⟩ρ⟨ξ2⟩ρ⟨ξ⟩−ρ. For the proof, it suffices to show the estimate∣∣S̃∗∣∣ ≲ ∥v∥L2∥v1∥L2∥v2∥L2 .

We have the relation

σ − σ1 + σ2 = (τ − ξ2)− (τ1 − ξ21) + (τ2 − ξ22) = 2ξξ2.
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Since the upper-bounds of |K∗(ξ1, ξ2)|2 used in the proof of Proposition 5.1 are
symmetric with respect to ξ1 and ξ2, we can analogously prove Proposition 5.2
with the subscripts 1 and 2 interchanged. □

6. Bilinear estimates for f4(u)

In this section we consider the nonlinear term f4(u) = (V ∗xū)ū, or more generally
the quadratic form f4(u1, u2) = (V ∗x ū1)ū2. We shall derive the following estimate

(19) ∥f4(u1, u2)∥Xs,−c ≲ ∥u1∥Xs,b∥u2∥Xs,b

for suitable s = −ρ < 0 and 0 < c < 1/2 < b < 1. To prove (19), we again use a
duality argument. The Fourier transform of f4 is

f̂4(ζ) =

∫
V̂ (−ξ1)û1(ζ1)û2(−ζ − ζ1) dζ1,

so that we should estimate the cubic form

S∗∗ ≡
∫∫

K∗∗(ξ1, ξ2)v̂(ζ)v̂1(ζ1)v̂2(ζ2)

⟨σ⟩c⟨σ1⟩b⟨σ2⟩b
dζdζ1.

Here, v is an arbitrary element of L2(R2), the symbols ζ, ζj, σ, σj, j = 1, 2 are
defined as before, but they should satisfy ζ+ ζ1+ ζ2 = 0, and the kernel K∗∗(ξ1, ξ2)
is equal to K∗(ξ1, ξ2) in S

∗. Then, the estimate (19) is equivalent to

(20) |S∗∗| ≲ ∥v∥L2∥v1∥L2∥v2∥L2 .

Proposition 6.1. Let m ≥ 0. Let V ∈ L1
loc(R) satisfy (6). Let 0 < c < 1/2 < b

and 0 ≤ ρ ≤ min{m/2 + c+ 1/4;m+ 2c}. Then the estimate (19) holds.

Proof. We shall prove (20). As in the proof of Propositions 4.1 and 5.1, we may
assume |ξ1|, |ξ2| ≥ 1. By the energy conservation

σ1 + σ2 + σ = (τ1 − ξ21) + (τ2 − ξ22) + (τ − ξ2) = −(ξ2 + ξ21 + ξ22),

we have ξ2 + ξ21 + ξ22 ≤ 3max{|σ|, |σ1|, |σ2|}. We split the integration region into
subregions according to which of |σ|, |σ1| and |σ2| is the largest.

Case 1. Let |σ1|, |σ2| ≤ |σ|. We estimate the contribution S∗∗
1 of this region to

S∗∗. We set

I∗∗1 (ζ) ≡
∫
|σ1|,|σ2|≤|σ|

|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζ1 =

∫
|σ1|≤|σ|

dσ1

∫
C1

|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ1

with C1 = C1(ζ, σ1) = {ξ1 ∈ R : |σ2| ≤ |σ|}. It suffices to show supζ I
∗∗
1 (ζ) < ∞.

For fixed ζ and σ1, we change the variable from ξ1 to σ2. We have the relations
dσ2 = 2(ξ2 − ξ1)dξ1, and (ξ2 − ξ1)

2 = 2(ξ21 + ξ22) − ξ2 = −3ξ2 − 2(σ1 + σ2 + σ).
Therefore,

I∗∗1 (ζ) ≲
∫
|σ1|≤|σ|

dσ1

∫
|σ2|≤|σ|

|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b|3ξ2 + 2(σ1 + σ2 + σ)|1/2
dσ2.

Clearly K∗∗(ξ1, ξ2) satisfies the same estimate (12) for K(ξ1, ξ2), we can estimate
I∗∗1 (ζ) in the same way as I1(ζ) in the proof of Proposition 4.1. Thus we have
proved supζ I

∗∗
1 (ζ) <∞ provided that ρ ≤ min{m/2 + c+ 1/4;m+ 2c}.
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Case 2. Let |σ|, |σ2| ≤ |σ1|. We estimate the contribution S∗∗
2 of this region to

S∗∗. We set

I∗∗2 (ζ1) ≡
∫
|σ|,|σ2|≤|σ1|

|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dζ =

∫
|σ|≤|σ1|

dσ

∫
C2

|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dξ

with C2 = C2(ζ1, σ) = {ξ ∈ R : |σ2| ≤ |σ1|}. We further divide C2 into the two
sub-regions C21 = {ξ ∈ C2 : 3|ξ| ≤ |ξ1|} and C22 = C2 \ C21. In both cases,
for fixed ζ1 and σ, we change the variable from ξ to σ2. We have the relations
dσ2 = 2(ξ2 − ξ)dξ. Since |ξ2 − ξ| ≥ |ξ1|/3 in C21, we estimate the contribution
I∗∗21 (ζ1) of C21 to I∗∗2 (ζ1) as

I∗∗21 (ζ1) ≲
∫
|σ|≤|σ1|

dσ

∫
|σ2|≤|σ1|

1C21(ξ1)|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b
dσ2
⟨ξ1⟩

.

Clearly we have the estimate (13) with K replaced by K∗∗. Hence, it follows from
(14) that I∗∗21 (ζ1) ≲ ⟨σ1⟩(2ρ−m−1/2)++1−2(b+c).
On the other hand, since (ξ2 − ξ)2 = 2(ξ2 + ξ22) − ξ21 = −3ξ21 − 2(σ1 + σ2 + σ),

the contribution I∗∗22 (ζ1) of C22 to I∗∗2 (ζ1) satisfies

I∗∗22 (ζ1) ≲
∫
|σ|≤|σ1|

dσ

∫
|σ2|≤|σ1|

1C22(ξ1)|K∗∗(ξ1, ξ2)|2

⟨σ⟩2c⟨σ1⟩2b⟨σ2⟩2b|3ξ21 + 2(σ1 + σ2 + σ)|1/2
dσ2.

Clearly we have the estimate (12) with K and σ replaced with K∗∗ and σ1 re-
spectively. Since |ξ1|, |ξ2| ≲ |ξ| on C22, it follows from Lemma 2.1 (i), (ii) that
I∗∗22 (ζ) ≲ ⟨σ1⟩(ρ−m)++1−2(b+c). Thus we have proved supζ I

∗∗
2 (ζ1) <∞ provided that

0 ≤ ρ ≤ min{m/2− 1/4 + b+ c;m− 1 + 2(b+ c)}.
Case 3. Let |σ|, |σ1| ≤ |σ2|. By symmetry, changing the variables ζ1 and ζ2, we

can treat this case in the same way as Case 2. □
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