一般化された逆[*]半群の巾等元の恒等式

島根大学理学部紀要 Volume 28 Page 9-11 published_at 1994-12-26
アクセス数 : 1454
ダウンロード数 : 118

今月のアクセス数 : 65
今月のダウンロード数 : 1
File
c0010028r002.pdf 231 KB エンバーゴ : 2001-09-29
Title
一般化された逆[*]半群の巾等元の恒等式
Title
Identities for Idempotents of Generalized Inverse [*-] Semigroups
Title Transcription
イッパンカ サレタ ギャク [*] ハングン ノ キントウゲン ノ コウトウシキ
Creator
Yamamoto Hifumi
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 28
Start Page 9
End Page 11
Journal Identifire
ISSN 03879925
Descriptions
It is well-known that an orthodox semigroup S is a generalized inverse semigroup if the set E(S) of idempotents of S satisfies one of the following identities : (I.1)x1x2x3x4=x1x3x2x4, (I.2)x1x2x3x1=x1x3x2x1 and (I.3)x1x2x1x3x1=x1x3x1x2x1 (see [4]). In this paper, we shall show that a regular [*-] semigroup S is a generalized inverse [*-] semigroup if E(S) [the set P(S) of projections of S] satisfies the identity (I.2)[(I.1)], but it is not necessarily a generalized inverse [*-] semigroup even if E(S) [P(S)] satisfies (I.3)[(I.2)].
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1994-12-26
Access Rights open access
Relation
[NCID] AN00108106