ファイル情報(添付) | |
タイトル |
無限ネットワーク上のマキシミニ切断問題
|
タイトル |
A Maximin Cut Problem on a Infinite Network
|
タイトル 読み |
ムゲン ネットワークジョウ ノ マキシミニ セツダン モンダイ
|
著者 |
山﨑 稀嗣
|
収録物名 |
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
|
巻 | 25 |
開始ページ | 7 |
終了ページ | 14 |
収録物識別子 |
ISSN 03879925
|
内容記述 |
その他
The study of duality relations between the max-flow problems and the min-cut problems seems to be one of the most important themes in the theory ofnetworks. On a finite network, the celebrated max-flow min-cut theorem due to Ford and Fulkerson [2] has been the unique result for this direction before the work of Strang [6]. On an infinite network, Yamasaki [7] and Nakamura and Yamasaki[4] gave several max-flow min-cut theorems related to several kinds of flows and cuts. In this paper, we shall introduce a notion of an exceptional set of cuts with respect to the extremal width and consider a maximin cut problem. It will be shown by using the penalty method that the value of this maximin problem is equal to thevalue of a max-flow problem.
For notation and terminology, we mainly follow [3] and [5]. |
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学理学部
The Faculty of Science, Shimane University
|
発行日 | 1991-12-25 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00108106
|