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As a dual problem of a max-flow problem on an infinite network, a maximin cut problem
is considered with the aid of exceptional sets of cuts in the sense of the extremal width of the
network. The penalty method in the theory of mathematical programming plays an
important role in our study.

§1. Introduction

The study of duality relations between the max-flow problems and the min-cut
problems seems to be one of the most important themes in the theory of
networks. On a finite network, the celebrated max-flow min-cut theorem due to
Ford and Fulkerson [2] has been the unique result for this direction before the work
of Strang [6]. On an infinite network, Yamasaki [7] and Nakamura and Yamasaki
[4] gave several max-flow min-cut theorems related to several kinds of flows and
cuts. In this paper, we shall introduce a notion of an exceptional set of cuts with
respect to the extremal width and consider a maximin cut problem. It will be shown
by using the penalty method that the value of this maximin problem is equal to the
value of a max-flow problem.

For notation and terminology, we mainly follow [3] and [5].

§2. Flows and cuts

Let X and Y be countable sets of nodes and arcs respectively and K be the node-
arc incidence function. We assume that the graph G = {X, Y, K} is connected and
has no self-loop. For a strictly positive function r on Y, we call the pair N = {G, r}
an infinite network. Denote by L(X) and L(Y) the sets of all real functions on X
and Y respectively, by L (Y) the set of all nonnegative functions on Yand by Ly(Y)
the set of we L(Y) such that the support {yeY; w(y) # 0} of w is a finite set. Let p
and g be numbers such that

p>1 and 1/p+1/g=1

and H,(w) be the energy of weL(Y) of order p, ie.,
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Hp(w) = Zyel’ 7'(y)|W(y)|p

Denote by L,(Y; r) the set of all we L(Y) with finite energy of order p. Note that
L,(Y;r) is a reflexive Banach space with the norm [H,(w)]'”. We always assume
that the condition

(ALF), Yoy [K(x, )Ir(y)! ™1 < oo
holds for all xe X, ie., N is g-almost locally finite.
RemMARK 2.1. By Holder’s inequality, the inequality
21) Yy [K )W < [Ryey [KCx, p)lr(y) 41V LH ,(w)]'P
holds for we L(Y).
For we L(Y) and xeX, we define I(w; x) by
Iw; x) = Yoy K(x, p)w(y)

if the sum is well-defined. By (2.1), I(w; x) is well-defined for every weL,(Y; r).
Let A and B be mutually disjoint nonempty finite subsets of X. We say that
weL(Y) is a flow from A4 to B if it satisfies the following conditions:

Yoy [K(x, pw(y)| < o for all xeX;

Iw;x)=0 for all xeX — A — B;

erAUBI(W; x) = 0
Denote by F(4, B) the set of all flows from A to B. We define the strength I(w) of
weF(4, B) by

I(W) = - erA I(W; X) = erBI(W; x)‘

Put Fo(A4, B) = F(A, B)n Ly(Y) and denote by F,(4, B) the closure of Fy(A4, B) in the
Banach space L,(Y; r). Note that F,(4, B) is a subset of F(4, B) by Remark 2.1. 1If
weF (A, B) and if {w,} is a sequence in Fo(4, B) such that H,(w, —w) >0 as n— oo,
then {w,(y)} converges to w(y) for each yeY and {I(w,)} converges to I(w) by (2.1).

ReMARK 2.2. For every xeX, K(x, )y~ 'eLy/(Y;r). In fact,
Yaer FONK (x, )r(y) 1 = ey [K (3, p)|7(p)! 79 < 0

by condition (ALF), Therefore, for every sequence {w,} in F,(4, B) which
converges weakly to we F,(4, B), we see that {I(w,; x)} converges to I(w; x) as n
— oo for every x, so that I(w,) — I(w) as n— 0.

First we shall introduce a general max-flow problem. Given a (capacity)
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function We L' (Y) and a nonempty subset & of flows, the max-flow problem related
to Wand & is formulated as follows:

(M%) Find M(W;F)=sup{I(w); weZ and |w(y)| < W(y) on Y}.
By the above observation, we have
M(W; Fo(A, B)) < M(W; F,(A, B)) < M(W; F(A, B)).

To state min-cut problems, we recall some notation. For mutually disjoint
nonempty subsets X; and X, of X, denote by X; © X, the set of all arcs which
connects X; and X, directly. We say that a subset Q of Yisacutif Q = X' © (X
— X') for some nonempty proper subset X' of X. We say that Q is a cut between A
and B if there exists a subset X' of X such that 0 = X' ©(X — X'), X' 24 and X
— X' > B. Since the pair {X’, X — X'} is uniquely determined by Q, we put X’
= Q(4) and X — X’ = Q(B) for simplicity. Denote by Q,p the set of all cuts
between 4 and B and by Q) the set of all Qe Q,, 5 such that Q is a finite subset of
Y .

Given a (capacity) function WeL"(Y) and a subset € of cuts, the min-cut
problem related to W and € is formulated as follows:

(M*®) Find M*(W; 6)=inf{) .o, W(); Qe ¥}

Here we use the convention that the infimum on the empty set is equal to oo.
The characteristic function uye L(X) of Q€ Q , p is defined by uy(x) = 1 on Q(A)
and uy(x) =0 on Q(B). For a cut QeQ,p and we L(Y), let us define a cut-value
J(w; Q) of w on Q by '
JW; Q) = 3 ey W) Lsex K (%, y)ug(x)

if the sum is well-defined.
We prove the following key lemma.

LemMa 2.3. Let weF (A, B) and Q€Q, 5. Then the equality I(w) = — J(w; Q),
ie.,

ZxE‘X uQ(x) Zyel’ K(x, y)W(y) = Zer W(_V) erX K(X, y)uQ(x)
holds if any one of the following conditions is fulfilled:
(1) weFy(A, B) and QeQ 3.
(2) weF,(A, B) and Qe Q).
Proor. If Condition (1) is fulfilled, then our assertion is merely a change of

order of summation. Assume Condition (2). There exists a sequence {w,} in
Fo(A, B) such that H,(w —w,) >0 as n— o0. Since w,eLy(Y), we have I(w,) = —
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J(w,; 0) by (1). Noting that w,(y) = w(y) as n — co for each yeY and that Qe QY
and

[P ex K(x, Yuo(x)| =0 for y¢Q,

we see that J(w,; Q) — J(w; Q) as n — co. Since I(w,) — I(w) as n — oo by the above
observation, we conclude that I(w) = — J(w; Q).
We proved the following max-flow min-cut theorem in [5]:

THEOREM 2.4. M(W; Fyo(4, B))= M*(W; Q 4 p).

§3. Extremal width p,(A4) of a set A of cuts

We recall the extremal width of a set of cuts which was defined in [3].
For a set A of cuts, we define the extremal width p,(4) of 4 (of order p) as the
inverse of the value of the following convex programming problem:

(CP) Minimize H,(W)
subject to WeL*(Y) and )., W(y) =1 for all Qe 4.
Denote by E(A) the set of all feasible solutions of (CP). Then
pp(4)~t = inf{H,(W); We E(4)}.

The following properties of p,(4) were proved in [3]:
Lemma 3.1. If A, © Ay, then p,(A4;) = py(4,).

LemMMA 32 Z:; 1 /“Lp(An)— ! = :u'p(U;O= 1 An)-— 1'

We say that a set 4 of cuts is p-exceptional if p,(4)= co. By the above
lemmas, we see that any subset of a p-exceptional set is p-exceptional and that the
countable union of p-exceptional sets is also p-exceptional.

LemMA 3.3. A set A of cuts is p-exceptional if and only if there exists We L' (Y)
such that H,(W) < oo and ) .o W(y) = o for all Qe A. We call this W a penalty
Sfunction for A.

COROLLARY 3.4. A p-exceptional set of cuts does not contain a finite cut.

LemMMA 3.5. Let A be a set of Q.5 — QY% Then A is p-exceptional if any one
of the following conditions is fulfilled:

(1) Zye)’ ’(y) < o0,

(2) r(y) is bounded and A contains at most countable cuts.
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ProoF. Assume Condition (1) and let W=1 on Y. Then )., W(y) = oo for
all Qe and H,(W) =}, ,¥(y) < o0, so that p,(4) = co. Next assume Condition
(2). On account of Lemma 3.2, it suffices to show that {Q} is p-exceptional for every
Qed. Let Q={y;k=12--}ed and define WeL(Y) by

W(y,) = [kr(y,)"/"]1~ " for each k and W(y)=0 on Y— Q.

It is clear that H,(W) < co. By our assumption, there exists ¢ > 0 such that r(y,) < ¢
for all k, so that

YW =t71Py " kT = 0.
Thus {Q} is p-exceptional.

The following lemma which was proved in [3] will play an important role in our
study.

LEMMA 3.6. Let A be a set of cuts and assume that a sequence {W,} of
nonnegative functions converges to 0 in L,(Y;r), ie., H(W,)—0 as n— . Then
there exist a subsequence {W, } of {W,} and an p-exceptional subset A’ of A such that
limy ¢ Y e W () = O for every Qed — A'.

§4. Main results

Denote by QY°) the totality of p-exceptional subsets of Q,p Then every
Ae Q') is a subset of Q, 5 — QY by Corollary 3.4.

Given WeL'(Y) and mutually disjoint nonempty finite subsets 4 and B of X,
consider the following maximin cut problem:

(MM) Find M#(WQ Q45 = sup{M*(W; Q, 5 — 4); AGQ&O,OJ;}"

Here M*(W; Q5 — A) is a min-cut problem defined in §2.
We shall prove the following duality theorem:

Tueorem 4.1. Let WeL'(Y) and H,(W) < co. Then the following equality
holds : :

M(W; F,(A, B)) = M"(W; Q,, p).
ProOOF. Let w be a feasible solution of our max-flow problem, ie., weF,(4, B)
and |w(y)] < W(y) on Y. Then there exists a sequence {w,} in Fy(4, B) such that

H,w—w,)—=0asn—co. ForanyQeQ, we have I(w,) = — J(w,; Q) by Lemma
2.3, so that

II(Wn)I < z_veY lwn(y) ” erx K(x> y)uQ(x)l = Zye(_) |Wn(y)|
Put W,(y) = |w,(y) — w(y)|. Since H,(W,) —0 as n— oo, we can find by Lemma 3.6
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a subsequence {W, } of {W,} and a p-exceptional subset A, of Q,p such that
Y veo W ) =0 as k— oo for every QeQ,p— Ao,. Note that I(w,)— I(w) as
k — co. From the relation

YoreoWn | = 2yeo WO < Yyeo Wi, (),
it follows that
[H(w)| < limsupy. o Y yeol Wi )] < Yyeol WO < seo W)
for every QeQ, 5 — 4, and hence
I(w) < M*(W; Q5 — Ao) < MH(W; Q1p).

Therefore M(W; F,(4, B)) < M*(W; Q, ). To prove the converse inequality, let ¢ be
any number such that t < M*(W; Q). There is a p-exceptional subset A, of Q,
such that M*(W; Q, 5 — A,) >t, By Lemma 3.3, we can find a penalty function W’
for A,, ie, WeL'(Y) such that H,(W')<c and ) oW (y) = for all
Qed,. For any ¢ >0, we see easily that

M*(W+eW'; Q) > M*(W; Q5 — A1) > 1,
which is the so-caled penalty method. By Theorem 2.4,
MW+ eW'; Fo(A, B)) = M*(W+ eW'; Q4 p).

Since M(W+ eW’; Fy(4, B)) > t, there exists w,e Fy(4, B) such that I(w,) >t and
|w,(y)] < W(y) + eW'(y) on Y. Noting that H,(w,) <2°[H,(W)+ ¢’H,(W')] and
taking e =1/n for n=1,2,..., we can find a weakly convergent subsequence of
{w,}. Denote it by {w,} and let w be the limit. Since F,(4, B) is convex and
strongly closed, it is weakly closed (cf. [1]). Therefore we F,(4, B). Since w,(y)
—w(y) as n — oo for every yey, [w(y)| < W(y) on Y. By Remark 2.2, we see that
I(w,)— I(w) as n — co. Thus I(w) >t, and M(W; F,(4, B)) > t. Therefore we have

M*(W; Q4 5 < M(W; F,(4, B).

TueOREM 4.2. Let WeL'(Y) and H, (W) < 0. Then there exists an optimal
solution w of (MF,(A, B)), ie., weF,(A, B) such that |w(y)| < W(y) on Y and I(w)
= M(W; F,(A, B)).

Proor. There exists a sequence {w,} in F,(A, B) such that |w,(y)| < W(y) on Y
and I(w,) - M(W; F,(A, B)) as n— oo. Since {H,(w,)} is bounded, we can find a
weakly convergent subsequence of {w,}. Denote it again by {w,} and let w be the
limit. Since F,(4, B) is weakly closed, we see that weF,(4, B). It follows that
[w(y)| < W(y) on Y. By Remark 2.2, I(w) = M(W; F,(A4, B)).

THEOREM 4.3. There exists an optimal solution A* of (MM), ie., A*e Q') such
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that M*(W; Q 4 5) = M*(W; Q 4.5 — A*).

ProoF. There is a sequence {A,} of p-exceptional subsets of Q, 5 such that
MW, Qup) — 1/n < M*(W; Q5 — A,) for every n. Let A* be the union of
{4,}. Then A* is also a p-exceptional subset of Q, » by Lemma 3.2 and contains 4,
so that

M*(W; Q5 — A,) < M*(W; Q5 — A%) < M*(W; Q.4 ).
Therefore M(W; Q45 — A*) = M*(W; Q 4 p).
Now we obtain max-flow min-cut theorems:

THEOREM 4.4. Let WeL*(Y) and H,(W)< . If Y ,yr(y)< oo, then
M(W; F,(A, B)) = M*(W, 0Y%).

PrOOF. By Lemma 3.5 (1), we see that A, =Q, 5 — QY% is a p-exceptional
set. By Corollary 3.4, A = A, for every AeQ'}. Thus we have

M*(W; Q%)B) =M*(W; Qup— Ao) = M*(W; Q5 — 4),
and hence M*(W; Q%) = M*(W; Q). Our assertion follows from Theorem 4.1.
By Lemma 3.5(2), we obtain:

Theorem 4.5. Let WeL'(Y) and H,(W)< o and assume that r(y) is
bounded. If Q,5— Q% is at most countable, then

M (W; F,(A, B)) = M*(W; Q'{%).

If we omit the condition that both A and B are finite sets, then Theorems 4.1
and 4.4 do not hold in general. This is shown by

ExaMPLE 4.6. Let X = {x,, x,; neZ*} and Y= {y,11, Yos1, Vs;n€eZ"*} and
define K by

K(xm yn+1) = K(x:v y:l+ 1) = K(xm y;: = - la
K(Xys1> Yasr1) = KXt 1, Yar1) = K(x, yu) = 1
for all neZ™* and

K(x, ) =0 for any other pair,

where Z* is the set of all nonnegative integers. Let us take A = {x,; neZ*} and
B={x,;neZ*} and assume that ) ,.,7(y) < co. Then F(4, B) = F,(4, B) for any
p>1. Now we define WeL"(Y) by

W(ns1) =Ws1) =0 and W(y)=2""
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for all ne Z*. Then M(W; F,(4, B)) = M*(W; Q5 = 2. Since Q{) is empty, we
have M*(W; Q , 5) = M*(W; Q%) = o by Theorem 4.4.
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