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As a dual problem of a max-fiow problem on an infinite network, a maximin cut problem 

is considered with the aid of exceptional sets of cuts in the sense of the extremal width of the 

network. The penalty method in the theory of mathematical programming plays an 
important role in our study. 

S 1. Imtroductiom 

The study of duality relations between the max-flow problems and the min-cut 

problems seems to be one of the most important themes in the theory of 
networks. On a finite network, the celebrated max-flow min-cut theorem due to 

Ford and Fulkerson [2] has been the unique result for this direction before the work 

of Strang [6]. On an infinite network, Yamasaki [7] and Nakamura and Yamasaki 

[4] gave several max-flow min-cut theorems related to several kinds of fiows and 

cuts. In this paper, we shall introduce a notion of an exceptional set of cuts with 

respect to the extremal width and consider a maximin cut problem. It will be shown 

by usmg the penalty method that the value of this maximin problem is equal to the 

value of a max-flow problem 

For notation and terminology, we mainly follow [3] and [5] 

S 2. Fllows amd cwts 

Let X and Ybe countable sets of nodes and arcs respectively and K be the node-

arc incidence f'unction. We assume that the graph G = {X, Y, K} is connected and 

has no self-loop. For a strictly positive function r on Y, we call the pair N = {G, r} 

an infinite network. Denote by L(X) and L(Y) the sets of all real functions on X 

and Y respectively, by L+ (Y) the set of all nonnegative functions on Y and by Lo ( Y) 

the set of w e L(Y) such that the support {ye Y; w(y) ~ O} of w is a finite set. Let p 

and q be numbers such that 

p > I and 1/p + 1/q = 1 

and Hp(w) be the energy of w e L(Y) of order p, i.e 
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H (w) = ~y=Y r(y) I w(y) IP. 

Denote by Lp(Y; r) the set of all w e L(Y) with finite energy of order p. Note that 

Lp(Y; r) is a refiexive Banach space with the norm [Hp(w)] 1/P. We always assume 

that the condition 

(ALF)q ~y~Y IK(x, y)1 r(y)1 -q 

holds for all x e X, i.e., N is q-almost locally finite 

REMARK 2.1. By H6lder's inequality, the inequality 

(2.1) ~y~Y I K(x, y)w(y)1 ~ [~y~Y I K(x, y)lr(y)1 -q]l/q[Hp(w)]l/P 

holds for w eL(Y). 

For weL(Y) and xeX, we define I(w; x) by 

I(w x) = ~y=Y K(x, y)w(y) 

if the sum is well-defined. By (2.1), I(w ; x) is well-defined for every w e Lp(Y; r) 

Let A and B be mutually disjoint nonempty finite subsets of X. We say that 

w e L(Y) is a flow from A to B if it satisfies the following conditions 

~y=YIK(x, y)w(y)1 

I(w;x) = O for all xeX-A-B; 

~*=AuBI(w ; x) = O. 

Denote by F(A, B) the set of all flows from A to B. We define the strength I(w) of 

w e F(A, B) by 

I(w) = - ~.~A I(w ' x) = ~ I(w ' x) 

, *=B , 
Put Fo(A, B) = F(A, B) n Lo(Y) and denote by Fp(A, B) the closure of Fo(A, B) in the 

Banach space Lp(Y; r). Note that Fp(A, B) is a subset of F(A, B) by Remark 2.1. If 

w e Fp(A. B) and if {w~} is a sequence in Fo(A, B) such that Hp(w~ - w) -> O as n -> co, 

then {w~(y)} converges to w(y) for each y e Y and {1(w~)} converges to I(w) by (2.1) 

REMARK 2.2. For every x eX, K(x, ' )r~1eLq(Y; r). In fact, 

~y=Y r(y)IK(x, y)r(y) I = ~y~Y IK(x y)Ir(y)1 q -1 q 

by condition (ALF)q. Therefore, for every sequence {w~} m Fp(A, B) which 
converges weakly to w e Fp(A, B), we see that {1(w~ ; x)} converges to I(w ; x) as n 

-> oo for every x, so that I(w~) -> I(w) as n -> oo. 

First we shall introduce a general max-flow problem. Given a (capacity) 
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function We L+ ( Y) and a nonempty subset ~a~ of flows, the max-flow problem related 

to W and ~~a~ is formulated as follows 

(M~~ ) Fmd M(W ~~~~ ) = sup{1(w); we~ipa~ and lw(y)1 ~ W(y) on Y}. 

By the above observation, we have 

M(W; Fo(A, B)) ~ M(W; Fp(A, B)) ~ M(W; F(A, B)). 

To state mm-cut problems, we recall some notation. For mutually disjoint 

nonempty subsets Xl and X2 Of X, denote by X1 e X2 the set of all arcs which 

connects X1 and X2 directly. We say that a subset Q of Y is a cut if Q = X' e (X 

- X')for some nonempty proper subset X' of X. We say that Q is a cut between A 

and B if there exists a subset X' of X such that Q = X' e (X - X'), X' i) A and X 

- X' :D B. Since the pair 'lX', X - X'} is uniquely determined by Q, we put X' 

= Q(A) and X - X' = Q(B) for simplicity. Denote by QA,B the set of all cuts 
between A and B and by Q(Af~ the set of all Q e QA.B such that Q is a finite subset of 

Given a (capacity) function We L+ ( Y) and a subset ~~ of cuts, the min-cut 

problem related to W and ~~ is formulated as follows : 

(M*~~) Find M*(W; ~~)_ = inf{~y=Q W(y) ; Q e~~}. 

Here we use the convention that the infimum on the empty set is equal to co 

The ' characteristic function uQ e L(X) of Q e QA.B is defined by uQ(x) = I on Q(A) 

and uQ(x) = O on Q(B). For a cut Q e QA,B and w eL(Y), Iet us define a cut-value 

J(w; Q) of w on Q by 

J(w Q) = ~y=Y w(y)~*=x K(x, y)'uQ(x) 

if the sum is well-defined 

We prove the following key lemma 

LEMMA 2.3. Let weF(A, B) and Q e QA,B. Th,en the equahty I(w) J(w Q) 
i.e. , 

~.=~ uQ(x) ~y~Y K(x, y) w(y) = ~ w(y) ~.~x K(x y) uQ(x) 
y=Y 

holds tf any one of the following conditions is fulfilled: 

(1) weFo(A, B) and QeQA,B. 

( f ) 

(2) weFp(A, B) and QeQ . A,B 

PRooF. If Condition (1) is fulfilled, then our assertion is merely a change of 

order of summation. Assume Condition (2). There exists a sequence {w~} in 
Fo(A, B) such that Hp(w - w~) ~' O as n -> Go . Since w~ eLo(Y), we have I(w~) = -
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J(w~ , Q) by (1) Notmg that w (y) -> w(y) as n -> oo for each y e Y and that Q e Q(f) 

A,B 

and 

I~.=xK(x, y)uQ(x)1=0 for ycQ, 

we see that J(w~ ; Q) -> J(w ; Q) as n -> oo. Since I(w~) -> I(w) as n -> oo by the above 

observation, we conclude that I(w) = - J(w ; Q). 

We proved the following max-flow min-cut theorem in [5] : 

THEOREM 2.4. M(W; Fo(A, B))= M*(W; QA,B) 

S 3･ ExtreEnal width lBp~A ~ of a set A of cuts 

We recall the extremal width of a set of cuts which was defined in [3] 

For a set A of cuts, we define the extremal width /lp(A ) of A (of order p) as the 

inverse of the value of the following convex programming problem 

(CP) Minimize Hp(VV) 

subject to WeL+(Y) and ~y=Q W(y) ~: I for all Q e A. 

Denote by E(A) the set of all fe.asible solutions of (.CP). Then 

'lp(A)~1 = inf{H (W) WeE(A)l 

The following properties of ~p(A ) were proved in [3] : 

LEMMA 3.1. If A1 c A2' then /lp(Al) ~ /lp(A2)' 

LEMMA 3.2. ~"~= I /lp(A ) > /lp(U~ I A ) 

We say that a set A of cuts is p-exceptional if /lp(A) = oo. By the above 

lemmas, we see that any subset of a p-exceptional set is p-exceptional and that the 

countable union of p-exceptional sets is also p-exceptional. 

LEMMA 3.3. A set A of cuts i~~ p-exceptional tf and only tf th.ere exists We L+ (Y) 

such that Hp(W) 

function for A . 

COROLLARY 3.4. A p-exceptional set oJ' cuts does not contain a finite cut 

LEMMA 3.5. Let A be a set of QA,B - Q(Af~･ Then A is p-exceptional if any on.e 
of the following conditions i~~ fulfilled: ' 

(1) ~y~Yr(y) 

(2) r(y) is bounded and A contains at most countable cuts. 
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PROoF. Assume Condition (1) and let W= I on Y Then ~y=Q W(y) = oo for 
all Q e A and Hp(W) = ~y.Y r(y) 

(2). On account of Lemma 3.2, it suffices to show that {Q} is p-exceptional for every 

QeA. Let Q = {yk; k = 1, 2,...}eA and define WeL(Y) by 

W(y ) [kl (y )1/P] for each k and W(y) = O on Y- Q. 

It is clear that Hp(W) 

 O such that r(.yk) ~ t for all k, so that 

~y.Q W(y) > t 1/P~k"=1 k~1 = oo. 

Thus {Q} is p-exceptional. 

The following lemma which was proved in [3] will play an important role in our 

study. 

LEMMA 3.6. Let A be a set of cuts and assume that a sequence { W~} of 
nonnegative functions converges to O in Lp(.Y; r), i.e., Hp(W,,) ~> O as n ~' oo. Thell 

there exist a subsequence { W~k} of { W~} and an p-exceptional subset A' of A suc/'1 that 

limk_* ~y=Q W~k (y) = O for every Q e A - A'. 

S 4. Waim reswHes 

Denote by Q(A*B) the totality of p-exceptional subsets of QA.B. Then every 

A e Q(A"B) is a subset of QA B - Q(Af~ by Corollary 3.4. 
Given We L+ ( Y) and ~utualry disjoint nonempty finite subsets A and B of X, 

consider the following maximin cut problem 

(MM) Find M#(W~ QA.B) = sup{M*(W; QA,B - A);AeQ(A*B)}. 

Here M*(W; QA,B - A) is a min-cut problem defined in S 2 

We shall prove the following duality theorem : 

THEOREM 4.1. Let WeL+ (Y) and Hp(W) 
hold~" : 

M(W; Fp(A, B)) = M#(W; QA.B). 

PRooF. Let w be a fe.asible solution of our max-fiow problem, i.e., w e Fp(A, B) 

and I w(y)1 ~ W(y) on Y Then there exists a sequence {w~} m Fo{A, B) such that 

Hp(w - w*) -> O as n ~' oo. For any Q e QA,B, we have I(w,,) = - J(.w~ ; Q) by Lemma 

2.3, so that 

ll(w )1 
y~Q 

Put W (y) I w (y) w(y)1 Smce H (W) -> O as n ~' co we can find by Lemma 3.6 
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a subsequence {W~.} of { W~j. and a p-exceptional subset Ao of QA,B Such that 

~y~Q W~. (y) ~' O as k -> oo for every Q e QA,B - Ao' Note that I(w~.) ~' I(w) as 

k -> co. From the relation 

~y=Q Iw~.(y) I - ~y.Q I w(y) I ~ ~ W..(y) 

y=Q ' 
it follows that 

[ I(w) I 
y=Q 

for every Q e QA,B - Ao' and hence 

I(w) ~ M*(W; QA,B - Ao) ~ M#(W; QA,B). 

Therefore M(VV; Fp(A, B)) ~ M#(W; QA,B). To prove the converse inequality, Iet t be 

any number such that t 

such that M*(W; QA.B - A1) > t, By Lemma 3.3, we can find a penalty function W' 

for Al, i.e., W'eL+(Y) such that Hp(W')

Q e A1. For any e > O, we see easily that 

M*(W+ eW' ; QA,B) ~~ M*(W; QA,B - A1) >: t, 

which is the so-caled penalty method. By Theorem 2.4, 

M(W+ eW' ; Fo(A, B)) = M*(W+ eW'; QA,B). 

Since M(W+ 8W'; Fo(A. B)) > t, there exists w* e Fo(A, B) such that I(w*) > t and 

l 14',(y)1 ~ W(y) + 8W'(y) on Y Noting that Hp(w,) ~ 2p[Hp(W) + ePHp(W')] and 

taking 8 = I /n f'or n = 1, 2, . . . , we can find a weakly convergent subsequence of 

{w,}. Denote it by {w~} and let w be the limit. Since Fp(A, B) is convex and 

strongly closed, it is weakly closed (cf. [1]). Therefore w e Fp(A, B). Since w~(y) 

-> w(y) as n ~' oo for every y e Y, I w(y)1 ~ W(y) on Y By Remark 2.2, we see that 

I(w~) -> I(w) as n ~' oo. Thus I(w) ~ t, and M(W; Fp(A, B)) ~ t. Therefore we have 

M#(W; QA,B) ~ M(W; Fp(A, B)). 

THEOREM 4.2. Let WeL+ (Y) and Hp(W) 

solution w of (MFp(A, B)), i.e., w e Fp(A, B) such that I w(y) I ~ W(.J') on Y and I(w) 

= M(W; Fp(.A, B)). 

PRooF. There exists a sequence {w~} in Fp(A, B) such that I w~(y) I ~ W(y) on Y 

and I(w~) -> M(W; Fp(A, B)) as n -> oo. Since {Hp(w~)} rs bounded, we can find a 

weakly convergent subsequence of {w~}. Denote it again by {14'~} and let w be the 

limit. Since Fp(A, B) is weakly closed, we see that w e Fp(A, B). It follows that 

I w(y)1 ~ W(y) on Y By Remark 2.,_, I(w) = M(W; Fp(A, B)) 

THEOREM 4.3. There exists an optimal solution A* of (MM), i.e., A*eQ(*) such 
A,B 
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that M#(W; QA.B) = M*(W; QA.B - A*). 

PROOF. There is a sequence {A~} of p-exceptional subsets of QA,B such that 

M#(W; QA,B) - 1/n 

{A~}. Then A* is also a p-exceptional subset of QA,B by Lemma 3.2 and contains A~, 

so that 

M (W QAB A ) 

Therefore M(W; QA,B - A*) = M#(W; QA,B). 

Now we obtain max-flow min-cut theorems 

THEOREM 4.4. Let We L+ (Y) and Hp(W) 
M(W; Fp(A, B)) = M*(W; Q(Af~). 

PRooF. By Lemma 3.5 (1), we see that Ao = QA B ~ Q(Af~ is a p-exceptional 
set. By Corollary 3.4, A c Ao f'or every A e Q(A*B). T~'us we ~ave 

M*(W; Q(Af~) = M*(W; QA,B - Ao) ~ M*(W; QA,B - A), 

and hence M*(W; Q(Af~) = M#(W; QA,B). Our assertion follows from Theorem 4.1 

By Lemma 3.5(2), we obtam 

Theorem 4.5. Let WeL+ (Y) and Hp(W) 
bounded. If QA,B - Q(Af~ is at most countable, then 

M(W; Fp(A, B)) = M*(W; Q(Af~). 

If we omit the condition that both A and B are finite sets, then Theorems 4.1 

and 4.4 do not hold in general. This is shown by 

EXAMPLE 4 6 Let X {x~, x~, neZ+~ and Y {y~+1' y~+1' y'"', neZ+} and 

define K by 

K(x y ) = K(x' y' ) = K(x~, y~) = - 1, 
~' ~+1 ~' ~+1 

K(x~+1' y~+1) = K(x~+ 1' y~+1) = K(x~, y'"') = 1 

for all neZ+ and 

K(x, y) = O for any other pair, 

where Z+ is the set of all nonnegative integers. Let us take A = {x~ ; n e Z+} and 

B = {X~ ; n e Z+ } and assume that ~y=Yr(y) 

p > 1. Now we define WeL+ (Y) by 

W(y~+1) = W(y~+1) O and W(y") 2 
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for all neZ+. Then M(W' Fp(A B)) = M*(W' Q ) = 2 Smce Q(f) ' IS empty, We 

# ' ' ' 'A'B ' 
A,B 

have M (W QA B) = M (W; Q(Af~) = oo by Theorem 4 4 *
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