ファイル情報(添付) | |
タイトル |
古典群の同変ホモトピー群について
|
タイトル |
Equivariant Homotopy Groups of Classical Groups
|
タイトル 読み |
コテン グン ノ ドウヘン ホモトピー グン ニツイテ
|
著者 |
松永 弘道
|
収録物名 |
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
|
巻 | 21 |
開始ページ | 21 |
終了ページ | 30 |
収録物識別子 |
ISSN 03879925
|
内容記述 |
その他
In [4] we have studied the surjectivity of the forgetful homomorphism f(G, X) : K_G(X)→ K(X). The homomorphism gives informations about lifting actions on stabl vector bundles. One of the purpose of this paper is to study lifting actions on vector bundles and give actions explicitly for geometrical uses, for example, equivariant Hopf constructions and a lifting problem for other spaces than the spheres.
In section I we shall give a criterion for the existence of lifting actions which is obtained by G. Bredon's work [2]. Section 2 consists of results obtained by J. Folkinan's theorems [3], and Proposition 3 in [5]. Moreover we shall prove the equivariance for representatives of of generators of the groups _<π3>(SO(4)) and _<π7>(SO(8)). In section 3 we shall prove the equivariance of Bott maps [1], which present us various constructions of equivariant maps. In the last section we shall apply results in preceding sections and obtain a non existence theorem, equivanant Hopf constructions and a lifting property on complex plane bundles over the complex projective plane. |
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学理学部
The Faculty of Science, Shimane University
|
発行日 | 1987-12-25 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00108106
|