Equivariant Homotopy Groups of Classical Groups

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Hiromichi Matsunaga

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1987)

In [4] we have studied the surjectivity of the forgetful homomorphism $f(G, X): K_G(X) \rightarrow K(X)$. The homomorphism gives informations about lifting actions on *stable* vector bundles. One of the purpose of this paper is to study lifting actions on vector bundles and give actions explicitly for geometrical uses, for example, equivariant Hopf constructions and a lifting problem for other spaces than the spheres.

In section 1 we shall give a criterion for the existence of lifting actions which is obtained by G. Bredon's work [2]. Section 2 consists of results obtained by J. Folkman's theorems [3], and Proposition 3 in [5]. Moreover we shall prove the equivariance for representatives of of generators of the groups $\pi_3(SO(4))$ and $\pi_7(SO(8))$. In section 3 we shall prove the equivariance of Bott maps [1], which present us various constructions of equivariant maps. In the last section we shall apply results in preceding sections and obtain a non existence theorem, equivariant Hopf constructions and a lifting property on complex plane bundles over the complex projective plane.

§ 1. Bredon's exact sequence

In [2] G. Bredon has given an exact sequence for S^1 actions. The techinque used there is also applicable to S^3 actions. For use later, we reconstruct the exact sequence explicitly. For i=1 or 3, let $\mu\colon S^i\times X\to X$ be an S^i action with a fixed point x_0 which we shall take as the base point. Let d be 2 or 4 according to i=1 or 3. ρ_i denotes the standard representation of S^i and θ the trivial one dimensional representation. As in [2] S^{dk+r}_r denotes the dk+r dimensional sphere with the S^i action which is given by the representation $k\rho_i\oplus (r+1)\theta$. [, X] denotes the set of equivariant, base point preserving homotopy classes of equivariant maps. $\psi\colon [S^{dk+r}_r,X]\to \pi_{dk+r}(X)$ denotes the forgetful map, and $\beta\colon [S^{d(k+1)+r}_r,X]\to [S^{dk+r}_r,X]$ the map induced from the inclusion map $S^{dk+r}_r\subset S^{d(k+1)+r}_r$. Moreover we define a map $\alpha\colon \pi_{dk+r+1}(X)\to [S^{d(k+1)+r}_r,X]$ as follows. Let $f\colon (S^{dk+r}_r*e,S^{dk+r}_r)\to (X,x_0)$ be a map, where e denotes the unit element of the group S^i . Define a map $f\colon S^{d(k+1)+r}_r=S^{dk+r}_r*S^i\to X$ by

$$\tilde{f}((1-t)x+tg)=\mu(g)f((1-t)g^{-1}x+te) \qquad \text{for} \quad 0\leq t\leq 1, \quad x\in X, \quad g\in G,$$

and set $\alpha([f]) = [\tilde{f}]$, where [] denotes an equivalence class. Since the set $[S_r^{dk+r}, X]$

has a natural group structure, by a routine we have

PROPOSITION 1. There exists the following exact sequence:

$$\cdots \xrightarrow{\beta} [S_r^{dk+r+1}, X] \xrightarrow{\psi} \pi_{dk+r+1}(X) \xrightarrow{\alpha} [S_r^{d(k+1)+r}, X] \xrightarrow{\beta} \cdots$$

§ 2. Constructions of equivariant maps

In this section we give some constructions of equivariant maps in the case of classical groups SO(n), U(n) and Sp(n).

(1) A theorem induced from Folkman's theorems. Let I_k be the ideal generated by the monomial $(x-1)^k$ in the representation ring $R(S^1) = Z[x, x^{-1}]$. Set $(e^{2\pi it} - 1)^k = \sum_j e^{2\pi ib(j)t} - \sum_j e^{2\pi ia(j)t}$ for $0 \le t \le 1$, and let T(g) and S(g) be $2^{k-1} \times 2^{k-1}$ diagonal matrices with entries $e^{2\pi ib(j)t}$ and $e^{2\pi ia(j)t}$ for $1 \le j \le 2^{k-1}$ respectively, where g is $e^{2\pi it}$. Let $f_1: S^1 \to SU(n) \subset U(n)$, $n = 2^{k-1}$, be the map defined by

$$f_1(e^{2\pi it}) = \text{Diag}(e^{2\pi i(b(j)-a(j))t}).$$

Since

$$\sum_{l=0}^{p} \binom{k}{2} 2l - \sum_{l=1}^{p} \binom{k}{2l-1} (2l-1) = k \left(\sum_{l=0}^{p} \binom{k-1}{2l-1} - \sum_{l=1}^{p} \binom{k-1}{2l-2} \right)$$

$$= 0 \text{ for } p = \left[\frac{k}{2} \right],$$

det Diag $(e^{2\pi i(b(j)-a(j))t})=1$. Then $f_1 \simeq 0$. Therefore we have an equivariant extension $f_2: S^1*S^1 \to U(n)$, where S^1 action on U(n) is given by

$$U(n) \ni A \longrightarrow T(q)AS(q)^{-1} \in U(n)$$
 for $q \in S^1$.

Let m be an arbitrary integer. We consider the restriction homomorphism of representation rings $Z(S^1) \to Z(Z_m)$ and use Proposition 3.3 in [3] to obtain that $\deg f_2 \equiv 0 \mod m$ and accordingly $\deg f_2 = 0$. Thus we have an equivariant extension $f_3 \colon S^1 \ast S^1 \ast$

PROPOSITION 2. There exists an equivariant map $f_k: S_0^{2k-1} \to U(n)$ of degree 1.

REMARK. By §4 in [3], we have similar results for SO(n) and Sp(n).

(2) A result obtained from Proposition 4 in [5]. Let D(t) be the 2×2 matrix $\begin{pmatrix} \cos 2\pi t - \sin 2\pi t \\ \sin 2\pi t & \cos 2\pi t \end{pmatrix}$ and S_l be the $2l \times 2l$ matrix with l times of D(t) on the diagonal. Define an S^1 action on SO(2l) by

$$SO(4k+2)\ni A\longrightarrow \mu(g)(A)=S_l(g)AS_l(g)^{-1}$$
 for $g\in S^1$.

By Proposition 1 in §1, we have a commutative diagram

where \cong denotes the obvious isomorphisms. Then we have

Proposition 3.
$$i_*\psi([S_{4k-3}^{4k-1}, SO(4k)) \supset 2\pi_{4k-1}(SO(4k+2))$$
 for $k \ge 1$.

PROOF. Since $\pi_{4k-2}(U(2k)) = \pi_{4k-2}(U(2k+1)) = 0$ and $\pi_{4k-2}(SO(4k)) = \pi_{4k+2}(SO(4k+2)) = 0$, $i_*: [S_{4k-3}^{4k-3}, SO(4k)] \rightarrow [S_{4k-3}^{4k-3}, SO(4k+2)]$ is an isomorphism. Then by Proposition 4 in [5], we obtain the result in Proposition 3.

(3) Lower dimensional cases.

Let $S_{l,k}$ and $S'_{l,k}$ be the $(2l+k)\times(2l+k)$ matrices $D(t)^l\times I_k$ and $I_k\times D(t)^l$ respectively, where I_k denotes the unit matrix of degree k. Now we consider equivariant homotopy sets $[S^3, SO(4)]$ and $[S^7, SO(8)]$ with suitable actions on the spaces. The following maps are known as representatives for generators of π_3 (SO(4)):

$$\sigma_3$$
: $S^3 \longrightarrow SO(4)$ given by $\sigma_3(q)x = qx$ for $q, x \in S^3 = Sp(1)$,
 σ'_3 : $S^3 \longrightarrow SO(4)$ given by $\sigma'_3(q)x = x\bar{q}$ for $q, x \in S^3 = Sp(1)$.

More explicitly for $q = q_0 + q_1 i + q_2 j + q_3 k$,

$$\sigma_{3}(q) = \begin{pmatrix} q_{0} & -q_{1} & -q_{2} & -q_{3} \\ q_{1} & q_{0} & -q_{3} & q_{2} \\ q_{2} & q_{3} & q_{0} & -q_{1} \\ q_{3} & -q_{2} & q_{1} & q_{0} \end{pmatrix}, \quad \sigma_{3}'(q) = \begin{pmatrix} q_{0} & q_{1} & q_{2} & q_{3} \\ -q_{1} & q_{0} & -q_{3} & q_{2} \\ -q_{2} & q_{3} & q_{0} & -q_{1} \\ -q_{3} & -q_{2} & q_{1} & q_{0} \end{pmatrix}.$$

Now we consider q as a column vector $t(q_0, q_1, q_2, q_3)$. Then

$$\begin{split} &\sigma_3(S'_{1,2}q) = S'_{1,2}\sigma_3(q)^t S'_{1,2}\,,\\ &\sigma_3(S_{2,0}q) = S_{2,0}\sigma_3(q)I_4\,,\\ &\sigma'_3(S'_{1,2}q) = S'_{1,2}\sigma'_3(q)^t S'_{1,2}\,,\\ &\sigma'_3(S_{2,0}q) = \hat{S}_{2,0}\sigma'_3(q)I_4 \quad \text{where} \quad \hat{S}_{2,0} = \begin{pmatrix} {}^t D & 0 \\ & 0 & D \end{pmatrix}. \end{split}$$

Now representatives σ_7 , σ_7' for generators of $\pi_7(SO(8))$ are given by

 $\sigma_7((q, r))(x, y) = (q, r)(x, y) = (qx - \bar{y}r, yq + r\bar{x}),$ $\sigma_7'((q, r))(x, y) = (x, y)(q, r) = (x\bar{q} + \bar{r}y, -rx + yq)$ for Cayley numbers (q, r), (x, y) with ||(q, r)|| = ||(x, y)|| = 1. Therefore we have

$$\sigma_7(q,r) = \begin{pmatrix} \sigma_3(q) & -{}^t\sigma_3'(r)C \\ \sigma_3(r)C & {}^t\sigma_3'(q) \end{pmatrix}, \quad \sigma_7'(q,r) = \begin{pmatrix} \sigma_3'(q) & {}^t\sigma_3(r) \\ -\sigma_3(r) & {}^t\sigma_3'(q) \end{pmatrix},$$

where $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$, and 'A denotes the transposed matrix of A.

Then

$$\sigma_7(S'_{2,4}(q, r)) = S'_{2,4}\sigma_7(q, r)^t S'_{2,4},$$

$$\sigma_7(S_{4,0}(q, r)) = S_{4,0}\sigma_7(q, r)^t (S'_{1,6})^2,$$

$$\sigma_7'(S_{2,4}'(q,r)) = S_{2,4}'\sigma_7'(q,r)^t S_{2,4}',$$

$$\sigma_{7}'(S_{4,0}(q,r)) = \begin{pmatrix} \hat{D} & 0 \\ 0 & S_{2,0} \end{pmatrix} \sigma_{7}'(q,r) \begin{pmatrix} I_{4} & 0 \\ 0 & {}^{t}(S_{1,6})^{2} \end{pmatrix}, \text{ where } \hat{D} = \begin{pmatrix} {}^{t}D(t) & 0 \\ 0 & D(t) \end{pmatrix}.$$

Now we consider $S^3 = Sp(1)$ actions. By $(q'q, r)(x, y) = (q'qx - \bar{y}r, yq'q + r\bar{x})$,

it follows that
$$\sigma_7(q'q, r)(x, y) = \begin{pmatrix} \sigma_3(q')\sigma_3(q) & -{}^t\sigma_3'(r)C \\ \sigma_3(r)C & {}^t\sigma_3'(q){}^t\sigma_3'(q') \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_3(q') & 0 \\ 0 & I_4 \end{pmatrix} \sigma_7(q, r) \begin{pmatrix} I_4 & 0 \\ 0 & {}^t\sigma_3'(q') \end{pmatrix}, \text{ for } q'\overline{y}\overline{q'}r = \overline{y}r.$$

By $(q'q, q'r)(x, y) = (q'qx - \bar{y}q'r, yq'q + q'r\bar{x}),$

$$\begin{split} \sigma_7(q'q, \ q'r) &= \left(\begin{array}{ccc} \sigma_3(q')\sigma_3(q) & -{}^t\sigma_3'(r){}^t\sigma_3'(q')C \\ \\ \sigma_3(q')\sigma_3(r)C & {}^t\sigma_3'(q){}^t\sigma_3'(q') \end{array} \right) \\ &= \left(\begin{array}{ccc} \sigma_3(q') & 0 \\ \\ 0 & \sigma_3(q') \end{array} \right) \left(\begin{array}{ccc} \sigma_3(q) & -{}^t\sigma_3'(r)C \\ \\ \sigma_3(r)C & {}^t\sigma_3'(q) \end{array} \right) \left(\begin{array}{ccc} I_4 & 0 \\ \\ 0 & C{}^t\sigma_3'(q'){}^t\sigma_3(q')C \end{array} \right), \end{split}$$

and by $(x, y)(\overline{q'q, r}) = (x\overline{q}\overline{q}' + \overline{r}y, -rx + yq'q)$, for $q'\overline{q'yq'q} = yq'q$, it follows that

$$\begin{split} \sigma_7'(q'q,r) &= \left(\begin{array}{ccc} \sigma_3'(q')\sigma_3'(q) & {}^t\sigma_3(r) \\ & -\sigma_3(r) & {}^t\sigma_3'(q){}^t\sigma_3'(q') \end{array} \right) \\ &= \left(\begin{array}{ccc} \sigma_3'(q') & 0 \\ 0 & I_4 \end{array} \right) \left(\begin{array}{ccc} \sigma_3'(q) & {}^t\sigma_3(r) \\ & -\sigma_3(r) & {}^t\sigma_3'(q) \end{array} \right) \left(\begin{array}{ccc} I_4 & 0 \\ 0 & {}^t\sigma_3'(q') \end{array} \right), & \text{for } \bar{r}yq'\bar{q}' = \bar{r}y. \end{split}$$

By $(x, y)(\overline{q'q, q'r}) = (x\overline{qq'} + \overline{rq'y}, -q'rx + yq'q)$, it follows that

$$\sigma_{7}'(q'q, q'r) = \begin{pmatrix}
\sigma_{3}'(q')\sigma_{3}'(q) & {}^{t}\sigma_{3}(r){}^{t}\sigma_{3}(q') \\
-\sigma_{3}(q')\sigma_{3}(r) & {}^{t}\sigma_{3}'(q){}^{t}\sigma_{3}'(q')
\end{pmatrix} \\
= \begin{pmatrix}
\sigma_{3}'(q') & 0 \\
0 & \sigma_{3}(q')
\end{pmatrix}
\begin{pmatrix}
\sigma_{3}'(q) & {}^{t}\sigma_{3}(r) \\
-\sigma_{3}(r) & {}^{t}\sigma_{3}'(q)
\end{pmatrix}
\begin{pmatrix}
I_{4} & 0 \\
0 & {}^{t}\sigma_{3}'(q'){}^{t}\sigma_{3}(q')
\end{pmatrix}$$

for rq'yq'q' = rq'y and q'q'yq'q = yq'q.

NOTE. Let G be a compact Lie group and S^n be a G-sphere. Let $D: G \rightarrow SO(k)$ be a homomorphism. Suppose that a map $\chi: S^n \rightarrow SO(2k)$ satisfies

$$\chi(gx) = \begin{pmatrix} D(g) & 0 \\ 0 & I_k \end{pmatrix} \chi(x) \begin{pmatrix} I_k & 0 \\ 0 & {}^tD(g) \end{pmatrix} \quad \text{for} \quad g \in G.$$

Since $\begin{pmatrix} 0 & -I_k \\ I_k & 0 \end{pmatrix} \begin{pmatrix} I_k & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} 0 & I_k \\ -I_k & 0 \end{pmatrix} = \begin{pmatrix} D & 0 \\ 0 & I_k \end{pmatrix}$, the map $\chi' = \chi \begin{pmatrix} 0 & I_k \\ -I_k & 0 \end{pmatrix}$ satisfies $\chi'(gx) = \begin{pmatrix} D(g) & 0 \\ 0 & I_k \end{pmatrix} \chi'(x) \begin{pmatrix} {}^t D(g) & 0 \\ 0 & I_k \end{pmatrix}$, and obviously χ' is homotopic to χ .

§ 3. Equivariance of Bott maps

(1) Unitary groups U(n)

Let W_n be the standard complex U(n) module and V_2^0 be a 2-dimensional real module. We choose basis for W_n and V_2^0 . Then the map $\lambda_C : U(n) \to G_n(C^{2n})$ in (4.5) of [1] can be described as follows:

$$\lambda_C(A, \phi) = \begin{pmatrix} (\cos^2 \phi/2)I_n & (\sin \phi/2\cos \phi/2)\overline{A} \\ (\sin \phi/2\cos \phi/2)^t A & (\sin^2 \phi/2)I_n \end{pmatrix} \quad \text{for} \quad 0 \le \phi \le \pi$$

$$= \begin{pmatrix} (\cos^2 \phi/2)I_n & -(\sin \phi/2\cos \phi/2)I_n \\ -(\sin \phi/2\cos \phi/2)I_n & (\sin^2 \phi/2)I_n \end{pmatrix} \quad \text{for} \quad \pi \le \phi \le 2\pi.$$

Further,

$$\lambda_{c}(SAS^{-1},\,\phi) = \left(\begin{array}{cc} \bar{S} & 0 \\ 0 & \bar{S} \end{array}\right) \lambda_{c}(A,\,\phi) \left(\begin{array}{cc} \bar{S}^{-1} & 0 \\ 0 & \bar{S}^{-1} \end{array}\right),$$

and the map $f_C: G_n(C^{2n}) \to \Omega U(2n)$ is given by

$$f_C(P, \theta) = Pe^{i\theta} + (1-P)e^{-i\theta}$$
.

Hence

$$f_c(\lambda_c(SAS^{-1},\,\phi),\,\theta) = \left(\begin{array}{cc} \bar{S} & 0 \\ 0 & \bar{S} \end{array}\right) f_c(\lambda_c(A,\,\phi),\,\theta) \left(\begin{array}{cc} \bar{S} & 0 \\ 0 & \bar{S} \end{array}\right)^{-1}.$$

Thus we have proved

PROPOSITION 4. Let $\chi \colon S^k \to U(n)$ be an equivariant map of type (S, S). Then the map: $E^2S^k \to U(2n)$ which corresponds to $\Omega f_{C^\circ}\lambda \circ \chi$ is an equivariant map of type $\begin{pmatrix} \overline{S} & 0 \\ 0 & \overline{S} \end{pmatrix}$, $\begin{pmatrix} \overline{S} & 0 \\ 0 & \overline{S} \end{pmatrix}$, where E^2 denotes the double suspension.

REMARK. If the fixed point set of S^k is an m-sphere S^m for some $m \ge 1$, then we obtain a homomorphism $b: [S^k, U(n)] \to [E^2S^k, U(2n)]$.

(2) Orthogonal groups O(n).

According to the notations in [1], the map $\varepsilon_R^H \cdot \lambda_R : O(n) \to \Omega G_n(H^{2n})$, say λ , is given by

$$\lambda(A, \phi) = \begin{pmatrix} (\cos^2 \phi/2) I_n & (\sin \phi) A \\ (\sin \phi)^t A & (\sin^2 \phi/2) I_n \end{pmatrix} \quad \text{for} \quad A \in \mathcal{O}(n)$$

$$0 \le \phi \le \pi.$$

We have $\lambda(TAS^{-1}, \phi) = \begin{pmatrix} T & 0 \\ 0 & S \end{pmatrix} \lambda(A, \phi) \begin{pmatrix} T & 0 \\ 0 & S \end{pmatrix}^{-1}$ for $T, S \in O(n)$. Further we use the following maps given in §6 of [1],

$$f_{1,\theta} = f_1(\ , \theta): \quad G_n(H^{2n}) \ni P \longrightarrow u = Pe^{i\theta/2} + (1 - P)e^{-i\theta/2} \in U(4n),$$

 $\hat{f}_{2,\theta} = f_2(\ , \Theta): \quad U(4n) \ni u \longrightarrow g = ue^{i\theta/2}_2u^{-1} \in SO(8n),$

 $f_{3,x}=f_3(\ ,x)\colon SO(8n)\ni g\to ge_r^{ix}g^{-1}$, where e_r denotes the right multiplication. Since $\varepsilon_H^R\begin{pmatrix} T\ 0 \\ 0\ S \end{pmatrix}$ commutes with $e_r^{j\,\theta}/^2$ and e_r^{ix} , we have

$$f_{3,x}\hat{f}_{2,\theta}f_{1,\theta}\lambda(TAS^{-1},\,\phi) = \varepsilon_H^R\begin{pmatrix}T&0\\0&S\end{pmatrix}f_{3,x}\hat{f}_{2,\theta}f_{1,\theta}\lambda(A,\,\phi)\varepsilon_H^R\begin{pmatrix}T&0\\0&S\end{pmatrix}^{-1}\,.$$

Thus we have proved

PROPOSITION 5. Let $\chi: S^k \to O(n)$ be an equivariant map of type (T, S). Then The map $E^4S^k \to SO(8n)$ which corresponds to $\Omega^3 f_3 \circ \Omega^2 \hat{f}_2 \circ \Omega f_1 \circ \lambda$ is an equivariant map of type $\left(\varepsilon_H^R \left(\begin{array}{c} T \ 0 \\ 0 \ S \end{array} \right), \varepsilon_H^R \left(\begin{array}{c} T \ 0 \\ 0 \ S \end{array} \right)\right)$.

Next we have

PROPOSITION 6. Let $7 \le k < n$ and suppose that the forgetful map $\psi : [S^k, O(n)] \to \pi_k(O(n))$ is epic. Then $\psi : [E^4S^k, SO(8n)] \to \pi_{k+4}(SO(8n))$ is epic mod torsion.

PROOF. It is known that $\varepsilon_H^R: \pi_{4k+3}(Sp(2n)) \to \pi_{4k+3}(SO(8n))$ is isomorphic for even k and image $\varepsilon_H^R \supset 4\pi_{4k+3}(SO(8n))$ for odd k. Then the proposition is obtained by the commutative diagram

§ 4. Applications

(1) Non existence

Let $S^{(k)}$ be the $8k \times 8k$ matrix with k-times of $\begin{pmatrix} S & 0 \\ 0 & I_4 \end{pmatrix}$ on the diagonal, where S is the matrix $S_{2,0} = \begin{pmatrix} {}^tD(t) & 0 \\ 0 & D(t) \end{pmatrix}$, (3) in §2. We define an action of S^1 on the group SO(8k) by

$$SO(8k) \ni A \longrightarrow S^{(k)}A(S^{(k)})^{-1}$$
.

Then we have

PROPOSITION 7. Let $k \ge 2$. Then the group $\psi([S_{4k-1}^{8k-1}, SO(8k)])$ is a torsion group $\operatorname{mod}(\tau)$ in $\pi_{8k-1}(SO(k))$, where τ is the class of the characteristic map of the tangent bundle of S^{8k} .

PROOF. By (3) in §2, ψ : $[S_3^7, SO(8)] \rightarrow \pi_7(SO(8))$ is an epimorphism mod (τ) . Hence it follows from (2) of §3 that ψ : $[S_7^{11}, SO(64)] \rightarrow \pi_{11}(SO(64))$ is an epimorphism mod torsion. By Proposition 1, we have a commutative diagram

Let $i_{0*}\colon \pi_7(SO(8))\to \pi_7(SO(32))$ be the epimorphism which is induced from the inclusion map $SO(8)\subset SO(32)$, and ι_7 be the generator of the stable group $\pi_7(U(n))$, $n\geq 4$. Then there exists an element $x\in [S_7^{-1},\ SO(64)]$ such that $\beta^2(x)=2i_{0*}(\sigma_7)-\iota_7$ and $\psi(x)$ is a non zero multiple of the generator of $\pi_{11}(SO(64))$. Similarly there exists an element $x_1\in [S_7^{-1},\ SO(16)]$ such that $\beta^2(x_1)=2\sigma_7-\iota_7$ in $\pi_7(SO(8)\times U(4))$. Since $\beta^2\colon [S_7^{-1},\ SO(64)]\to \operatorname{Ker}\psi\subset\pi_7(SO(32)\times U(16))$ is an isomorphism mod torsion, by the commutative diagram

$$\begin{bmatrix} S_7^{11}, SO(64) \end{bmatrix} \xrightarrow{\psi} \pi_{11}(SO(64))$$

$$\uparrow_{i*} \qquad \qquad \uparrow_{i*}$$

$$\begin{bmatrix} S_7^{11}, SO(16) \end{bmatrix} \xrightarrow{\psi} \pi_{11}(SO(16)),$$

 $\psi(x_1)$ is non zero multiple of the generator of $\pi_{11}(SO(16))$. Therefore $\psi \colon [S_7^{-1}, SO(16)] \to \pi_{11}(SO(16))$ is an isomorphism mod torsion. Now let $k \ge 2$ be even and N = (k-2)/2. By Proposition 6 and the commutative diagram

we obtain the result in Proposition 7 for the case where k is even. For odd k, by a similar argument, we can complete the proof.

(2) Equivariant Hopf constructions

Let G be a compact Lie group and $\mu: G \times S^k \to S^k$ an action, and $\chi: S^k \to SO(n)$ an equivariant map of type (T, S), where $T, S: G \to SO(n)$ are homomorphisms. Then the map $f: S^k \times S^{n-1} \to S^{n-1}$ defined by $f(x, y) = \chi(x)y$ for $x \in S^k$, $y \in S^{n-1}$ is also equivariant with respect to obvious actions. Therefore the Hopf construction $G(f): S^k \times S^{n-1} \to ES^{n-1} = S^n$ is an equivariant map. Suppose that the fixed point set of S^k is an m-sphere S^m for some $m \ge 1$ and T = S. Then the set $[S^k, SO(n)]$ admits a group structure and the map

$$J_G: [S^k, SO(n)] \ni [\chi] \longmapsto [G(f)] \in [S^{k+n}, S^n]$$

is a homomorphism, i.e. an equivariant J-homomorphism.

EXAMPLE. By (3) in §3 we have an equivariant J-homomorphism J_{S^1} : $[S_3^7, SO(8)] \rightarrow [S^{15}, S^8]$. Consider the commutative diagram

$$\begin{bmatrix} S_3^7, SO(8) \end{bmatrix} \xrightarrow{J_G} \begin{bmatrix} S^{15}, S^8 \end{bmatrix}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\pi_7(SO(8)) \xrightarrow{J} \pi_{15}(S^8), G = S^1,$$

where J is the usual J-homomorphism. Since σ'_7 is in the ψ image, $\psi([S^{15}, S^8])$ includes the element of Hopf invariant one in $\pi_{15}(S^8)$.

(3) Lifting actions on complex plane bundles over the complex projective plane. Let CP^n be the *n* dimensional complex projective space. We have a cofibration $CP^1 \stackrel{i}{\leftarrow} CP^2 \stackrel{q}{\longrightarrow} S^4$. The map q is given by

$$q([z_1,\,z_2,\,z_3]) = (2\bar{z}_3z_1,\,2\bar{z}_3z_2,\,1 - 2|z_3|^2) \qquad \text{for} \quad [z_1,\,z_2,\,z_3] \in CP^2.$$

We consider the S^1 action $S'_{1,2}$ on S^3 , (3) in §2. Then we have the S^1 action on S^4 given by (trivial one) $\oplus \rho_{S^1}$. Here we quote the note (3) in §2. It is easy to see that the action admits a lifting on \mathbb{CP}^2 . Then we have

Proposition 8. For any complex plane bundle E, the bundle $E \oplus \underline{C}$ admits a lifting action.

PROOF. The first Chern class C_1 $(E \oplus (\det E)^{-1}) = 0$. Then we have a complex plane bundle $E_1 \rightarrow S^4$ such that $E \oplus (\det E)^{-1}$ is isomorphic to $q*E_1 \oplus \underline{C}$. Then we have an isomorphism

$$E \oplus (\det E)^{-1} \oplus (\det E) \cong q * E_1 \oplus (\det E) \oplus \underline{C}$$

and hence

$$E \oplus \underline{C} \cong q * E_1 \oplus (\det E)$$
,

where the right hand side admits a lifting. Hence we have the result of Proposition 8.

Note. Considering the bundle $E \otimes (\det E)^{-1}$, it is easy to see that if the first Chern class $C_1(E)$ is even then the bundle E admits a lifting. In the case C_1 odd, I do not know whether there exists such a bundle that can not admit any lifting or not.

References

- [1] R. Bott, Quelques remarques sur les théorèmes de periodicité, Bull. Soc. math. France, 87 (1959), 293-310.
- [2] G. Bredon, Homotopical properties of fixed point sets of circle group actions I, Amer. J. Math. 91 (1969), 874-888.
- [3] J. Folkman, Equivariant maps of spheres into the classical groups, Mem. of Amer. Math. Soc., 1971.
- [4] H. Matsunaga and H. Minami, Forgetful homomorphisms in equivariant K-theory, Publ. Res. Inst. Math. Sci. Kyoto Univ. 22 (1) (1986), 143-150.
- [5] H. Matsunaga, Note on bundles over spheres with group actions, Mem. Fac. Sci. Shimane Univ. 20 (1986), 21-24.