ファイル情報(添付) |
![]() |
タイトル |
Extraction of Whole-lung Field From Pseudo-chest X-ray Images Using U-net
|
著者 |
細越 翔太
松尾 和明
|
収録物名 |
Shimane Journal of Medical Science
|
巻 | 41 |
号 | 3 |
開始ページ | 63 |
終了ページ | 71 |
収録物識別子 |
ISSN 03865959
EISSN 24332410
|
内容記述 |
抄録・要旨
This study aimed to develop a model using U-net to extract the whole lung field from pseudo-chest X-ray images, including areas overlapping with cardiac and diaphragm shadows. Training involved pseudo-X-rays and lung label images from CT scans of 140 cases from the LIDC-IDRI dataset. The extraction performance of the model was evaluated using the Dice similarity coefficient (DSC). We also examined the correlations among patient size, lung volume, and DSC. As a result, the whole-lung field extraction model developed in this study tended to over-extract intestinal gas in some cases, and the extraction performance varied depending on the patient size. However, the DSC between the whole-lung label image and the output image was >0.9 for all the test data, indicating that the whole-lung field can be extracted from the pseudo chest X-ray image.
|
主題 |
computed tomography
chest X-ray image
whole-lung field
segmentation
deep learning
|
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
Faculty of Medicine, Shimane University
島根大学医学部
|
発行日 | 2024-09 |
権利情報 |
Faculty of Medicine, Shimane University
|
権利関係(リンク) | ![]() This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
出版タイプ | Version of Record(出版社版。早期公開を含む) |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AA00841586
[DOI] 10.51010/sjms.41.3_63
|