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This study aimed to develop a model using U-net 
to extract the whole lung field from pseudo-chest 
X-ray images, including areas overlapping with 
cardiac and diaphragm shadows. Training involved 
pseudo-X-rays and lung label images from CT scans 
of 140 cases from the LIDC-IDRI dataset.

The extraction performance of the model was 
evaluated using the Dice similarity coefficient 
（DSC）. We also examined the correlations among 
patient size, lung volume, and DSC. As a result, the 
whole-lung field extraction model developed in this 
study tended to over-extract intestinal gas in some 
cases, and the extraction performance varied depend-
ing on the patient size. However, the DSC between 
the whole-lung label image and the output image 
was >0.9 for all the test data, indicating that the 
whole-lung field can be extracted from the pseudo 
chest X-ray image.

Keywords: computed tomography, chest X-ray image, 
whole-lung field, segmentation, deep learning

INTRODUCTION

Computer-aided diagnosis （CAD） is a software that 
analyzes and processes medical images to detect ab-
normalities and performs qualitative diagnosis. CAD 
in chest X-ray images requires highly accurate lung 
field extraction because the segmentation of anatom-
ical structures is crucial for detecting lesions in the 
lung field and measuring the lung area ［1］. Several 
methods have been reported for extracting lung field 
regions from chest X-ray images using machine 
learning, including a method based on thresholding 
using histograms ［2］, a method that establishes sin-
gular points based on anatomical features and uses 
these singular points ［3］, and a method for deter-
mining the lung field boundaries based on pattern 
recognition and feature analysis ［4］. 

Recently, deep learning-based methods ［5, 6］ 
have been reported for lung field extraction from 
chest X-ray images, and these methods have 
achieved higher lung field extraction accuracy than 
the aforementioned methods. However, as X-ray im-
ages depict overlapping structures in the direction 
of the X-ray projection, it is difficult to extract the 
whole-lung field from chest X-ray images using 
conventional lung field extraction methods, including 
the left lower lobe overlapping the cardiac shadow 
and bilateral lower lobe lung basement areas over-
lapping the diaphragm shadow. Extraction of the 
whole-lung field from chest X-ray images is import-
ant because it may contribute in the development 
of new CAD technology and automatic scan range 
determination in chest CT examinations; however, 
only few studies have reported whole-lung field ex-
traction. 
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In this study, we created pseudo-chest X-ray 
images and whole-lung field label images by pro-
cessing chest CT images to compose the original 
dataset. Furthermore, we constructed a whole-lung 
field extraction model using this dataset and U-Net, 
an encoder-decoder type fully convolutional network 
（FCN） ［7］, as the deep learning model, and veri-
fied its extraction performance.

MATERIALS AND METHODS

Collecting image data
The LIDC-IDRI from The Cancer Imaging Archive 
（TCIA） ［8］ was used in this study. The LIDC-ID-

RI database contains data of 1,018 patients who 
underwent chest CT examinations for lung cancer 
screening. In this database, the chest CT images of 
140 adult patients who met all the following criteria 
were collected: non-contrast chest CT, slice thick-
ness <3.0 mm, reconstruction kernel as a high-reso-
lution function for the lungs, and no artifacts in the 
scan area. The collected 140 cases were randomly 
divided into 100, 20, and 20 groups and used as 
training, validation, and test data, respectively, to 
construct the dataset for this study. Training and 
validation data were used to train the model. During 
the training process, the training data were used to 
adjust the model parameters, and the validation data 
were used to monitor whether the model was over-
fitting the training data. After training, the perfor-
mance of the model was evaluated using test data.

Creating pseudo-chest X-ray image
Fig. 1 shows the image processing of a pseu-
do-chest radiograph. First, the chest CT images （512 
× 512, 16bit） were loaded into Image J （version 
1.48u, National Institutes of Health）, adjusted to a 
window level of -600 and a width of 1600, and 
then converted to 8bit. Subsequently, coronal images 
（slice thickness, 3 mm; slice spacing, 3 mm） were 

created using the re-slice process, and a ray sum 
image was created by outputting the average pixel 
values of the coronal images in the anteroposterior 
direction. Then, to adjust the matrix size of the ray 
sum image to 512 × 512, a margin with a pixel 
value of 0 was added if the vertical matrix size was 
<512, and 512 if it was >512. Finally, the images 
were down sampled to 256 × 256 pixels. These 
were defined as pseudo-chest X-ray images in this 
study. We created pseudo-chest radiographs for all 
cases collected from the database.

Creating whole-lung field label image
Fig. 2 shows the image processing of a whole-lung 
field label image. First, the same procedure as for 
the pseudo-chest X-ray image was used to load the 
chest CT image into Image J, convert it to 8-bit, 
and create coronal images. Next, the lung field 
boundaries of these coronal images were enhanced 
using a Sobel edge detector. A ray sum image was 
then created by outputting the average pixel val-
ues of the coronal images in the anterior–posterior 
direction. Binarization was performed for the lung 

Fig. 1. Creating pseudo-chest X-ray image
The chest CT images were converted to 8 bit. Coronal images were created, and a ray sum image was created 
by outputting the average pixel values of the coronal images in the anterior-posterior direction. The images were 
down sampled to 256 × 256 pixels.
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Fig. 2. Creating whole-lung field label image
The chest CT images were converted to 8bit. Coronal images were created, and the lung field boundaries of 
these coronal images were enhanced using a Sobel edge detector. A ray sum image was created by outputting 
the average pixel values of the coronal images in the anterior-posterior direction. Binarization was performed 
for the lung fields and other areas of the images, and areas other than the lungs were deleted. The images were 
down sampled to 256 × 256 pixels.

fields and other areas of the image using arithmetic 
processing, which set the pixel value to 0 for areas 
that were not lung fields and 255 for lung field ar-
eas. Finally, the image size was adjusted using the 
same procedure as for the pseudo-chest X-ray im-
age. These were defined as whole-lung field-labelled 
images in this study. We created a whole-lung field 
label image for all the cases collected from the da-
tabase. 

Extraction of whole-lung fields using U-net
A Neural Network Console （Sony, Tokyo, Japan） 
was used as the development environment for deep 
learning models. 

The architecture of the U-Net used in this study 
is shown in Fig. 3. The input image was a pseu-
do-chest X-ray image and the ground truth was 
a whole-lung field label image. Training was per-
formed to output the whole lung field, including the 
left lower lobe overlapping the cardiac shadow of 
the pseudo-chest X-ray image and the bilateral lower 
lobe lung basement areas overlapping the diaphrag-
matic shadow. Binarization of the lung and non-lung 
fields was performed by setting the threshold of the 

pixel value of the lung fields in the output image to 
0.5. Binary cross-entropy was used as the loss func-
tion during training and the model with the small-
est loss was adopted as the extraction model. The 
learning parameters were set as follows: number of 
epochs, 50; batch size, 5; Adam optimization func-
tion; and learning rate, 0.001. The holdout method 
was used to evaluate the extraction model.

Evaluation method
In this study, the Dice similarity coefficient （DSC） 
was used to evaluate the similarity of the lung 
fields between the whole-lung field label image and 
the output image from the extraction model in 20 
test data cases.
　

Dice similarity cofficient（X,Y） = 
2×|X ⋂ Y|　　（1）,

    |X| + |Y|
where X is the number of lung field pixels in the 
whole-lung field label image, and Y is the number 
of lung field pixels in the output image. Further-
more, we focused on the correlation among patient 
size, lung volume （LV）, and DSC. As an index of 
patient size, effective diameter （ED） ［9］ was calcu-
lated from the anterior–posterior and lateral lengths 
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measured from the axial images in the lung base-
ment area of each test data.
　ED =√AP×LAT 　　　　　　　　　　　（2）,
where AP is the anteroposterior length and LAT 
is the lateral length. The LV of the test data was 
measured using a 3D workstation （SYNAPSE VIN-
CENT; FUJIFILM, Tokyo, Japan）. The correlation 
among ED, LV, and DSC was examined using the 
single regression analysis.

Statistical analysis
Numerical data were expressed as the mean ± stan-
dard deviation. The Spearman’s rank correlation 
coefficient was used to test for correlations. The sta-
tistical significance level was set at 5%. R （version 
4.0.4, The R Foundation for Statistical Computing） 
［10］ was used for statistical analysis.

RESULTS

Evaluation of similarity
In the 20 test data cases, ED was 293.47 ± 30.21 

mm, LV was 4579.92 ± 970.55 ml, and DSC be-
tween whole-lung field label image and output im-
age was 0.966 ± 0.015 （Table 1）. The DSC was 
>0.9 for all the test data; therefore, the whole-lung 
field label image and the output image were in 
good agreement.

Fig. 4 shows five examples of the lung field ex-
traction results. In this figure, from left to right are 
the pseudo-chest X-ray, whole-lung label, and output 
images. In all the test data, （a） is the case with the 
smallest ED, （b） is the case with the largest ED, 
（c） is the case with the smallest LV, and （d） is 
the case with the largest LV. The DSCs were 0.974, 
0.960, 0.946, and 0.984 for （a）, （b）, （c）, and （d）, 
respectively, （e） shows a case of the overextraction 
of intestinal gas. The DSC in this case was the 
lowest for all the test data, with a value of 0.928.

Correlation among patient size, LV, and DSC
Fig. 5 shows the correlation between ED and DSC, 
and between LV and DSC. There was a significant 
negative correlation between ED and DSC （r = 

Fig. 3. Architecture of U-net in this study
The encoder part of U-Net consists of five stages, and at each stage, convolution, batch normalization, and max 
pooling are repeated to the bottom of the U-Net. The number of convolution filters was increased to 64, 128, 
256, 512, and 1,024. In the convolution layer, a filter with a kernel size of 3 × 3 was convolved with stride 1, 
and a rectified linear unit was used as the activation function. At the bottom of the U-Net, convolution and batch 
normalization were performed twice and output to the decoder section. In the decoder section, the output from 
the encoder section of the same resolution was concatenated, and convolution, batch normalization, and up con-
version were repeated. In the last convolution layer, a filter with a kernel size of 1 × 1 was convolved with stride 1, 
and a sigmoid function was used to output a 256 × 256-pixel image.
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Table 1. Effective diameter, Lung volume and Dice similarity coefficient in the 20 test data cases

Data are the mean ± standard deviation

Fig. 4. Examples of lung field extraction results
（a） case with the smallest ED, （b） case with the largest ED, （c） case with the smallest LV, 
（d） case with the largest LV, （e） case of over-extraction of intestinal gas.
ED: effective diameter; LV: lung volume; DSC: Dice similarity coefficient

Effective diameter （mm） Lung volume （ml） Dice similarity coefficient
293.47 ± 30.21 4579.92 ± 970.55 0.966 ± 0.015

Fig. 5. Correlation among patient size, lung volume, and DSC
（a） correlation between ED and DSC, （b） correlation between LV and DSC.

ED: effective diameter; LV: lung volume; DSC: Dice similarity coefficient
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-0.655, p < 0.001）. There was a weak positive but 
insignificant correlation between LV and DSC （r = 
0.359, p = 0.120）.

DISCUSSION

The whole-lung field extraction model in this study 
was able to extract the left lower lobe overlapping 
the cardiac shadow and the bilateral lower lobe 
lung basement areas overlapping the diaphragmatic 
shadow in most test data. Furthermore, the DSC 
between the whole-lung label image and the out-
put image was >0.9 for all the test data. Gozes et 
al. reported a deep-learning-based image processing 
technique for enhancing the contrast of soft lung 
structures in chest X-ray images using a FCN ［11］. 
In the process of accomplishing this task, they cre-
ated pseudo-chest X-ray images, labeled images of 
the whole-lung field from chest CT images, and 
used these images to perform deep learning to ex-
tract the whole-lung field. Comparing their whole-
lung field extraction results with ours, their model 
had a DSC of 0.953, while our model had a DSC 
of 0.966 ± 0.015, indicating comparable extraction 
performance. U-net is an encoder–decoder-type FCN 
that does not have a full concatenation layer; how-
ever, it consists of a convolutional layer ［7］. The 
feature map in the convolution contains simple and 
concrete features of the image as the layers of the 
network become shallower, and complex and ab-
stract features of the image as the layers become 
deeper. The Fourier transform of the feature map in 
the convolution is a high-pass filter that amplifies 
high-frequency components ［12］. Therefore, the 
high extraction performance of the whole-lung field 
in U-net and FCN can be attributed to the fact that 
the left lower lobe overlaps the cardiac shadow, 
and the bilateral lower lobe overlaps the diaphragm 
shadow, reducing the ambiguity at the boundary in 
the lung basement area by adding global and local 
feature maps of the lungs through skip connections.

In contrast, case （e） in Fig. 4 shows an over-
extraction of intestinal gas, with a DSC of 0.928, 
the lowest value in the test case. Factors contribut-
ing to the overextraction of intestinal gas may be 
the small amount of training data where intestinal 
gas was present and the structure of the extraction 

model. Collecting and learning from many cases in 
which intestinal gas is present may reduce the over-
extraction of intestinal gas. Furthermore, changing 
the model from U-net to Mask R-CNN also reduced 
the overextraction of intestinal gas. Mask R-CNN 
obtains the feature map of the image using a CNN, 
inputs the feature map to the regional proposal net-
work, and detects the location and content in the 
image ［13］. Then, even if they are in the same 
class and are different individuals, instance segmen-
tation recognizes them as different individuals and 
performs segmentation. Therefore, the Mask R-CNN 
can learn to recognize the lung field and intestinal 
gas as separate individuals, which is expected to 
improve the performance of the whole-lung field ex-
traction models.

As for the correlation among patient size, LV, 
and DSC, there was a significant negative correla-
tion between ED and DSC （r = -0.655, p < 0.001）, 
as shown in Fig. 5. People with high visceral fat 
have diaphragm elevation because caudal diaphragm 
movement is impeded compared with those who do 
not have high visceral fat. This may have caused an 
increase in the overlap between the bilateral lower 
lobe lung basement areas and the diaphragm on the 
chest radiograph, resulting in a tendency for the 
DSC to be lower in cases with larger EDs because 
of the lower extraction performance of the bilateral 
lower lobe lung basement areas. In contrast, there 
was a weak positive but insignificant correlation 
between LV and DSC （r = 0.359, p = 0.120）. The 
results showed that LV did not affect the extraction 
performance of the whole-lung field.

Most previous CAD systems for lung disease de-
tection in chest X-ray images performed lung field 
extraction before detecting the disease, and then 
detected the disease based on the extracted regions 
［14］. These systems are unable to extract the left 

lower lobe, which overlaps with the cardiac shadow, 
and the bilateral lower lobe lung basement areas, 
which overlap with the diaphragmatic shadow, thus 
detecting the disease in a limited lung area. How-
ever, our proposed method enables the detection 
of lung diseases, including areas that could not be 
extracted previously, and will contribute to the de-
velopment of novel CAD technologies. In addition, 
Demircioğlu et al. used conditional generative ad-
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versarial networks to achieve automatic scan range 
setting for chest CT ［15］. The automatic scan range 
setting reduces a patient’s radiation dose by sup-
pressing overscanning and reduces the variation in 
range setting among radiological technologists ［16］. 
In the study by Demircioğlu et al. the radiologist 
wrote annotations for the start and end positions of 
the scan in the scout view, and the neural network 
learned the positions of the annotations. Subsequent-
ly, an image is generated with annotations of the 
start and end positions of the scan for an unknown 
scout view. However, this approach may not consid-
er anatomical structures during the learning process. 
Additionally, the usefulness of the model should be 
determined under the supervision of a radiologist. 
In contrast, our proposed method can set the scan 
range based on the anatomical structure by extract-
ing the whole-lung field with high accuracy, which 
contributes to improving the reliability of automatic 
scan range setting.

One limitation of this study was that it was per-
formed on cases with clear lung field boundaries 
and did not include cases in which the disease ob-
scured the boundaries of the lung fields. In patients 
with disease, lung areas are reported to be difficult 
to segment due to stiffening, cloudiness, cavities, 
and masses in the lungs ［17］. Therefore, future 
studies should include additional cases with unclear 
lung field boundaries and examine the robustness 
of the model in cases involving various diseases. In 
addition, the hyperparameters of the whole-lung field 
extraction model were not examined in this study. 
For example, batch normalization was used for the 
model in this study; however, the batch size was set 
to five owing to GPU memory capacity limitations. 
In deep learning models that use batch normaliza-
tion, if the batch size is too small, the estimation of 
the mean and variance during the normalization of 
the neural network activity values may become un-
stable, and learning may not proceed well ［18］. As 
the model in this study obtained high extraction per-
formance even with a batch size of five, we did not 
verify the model by varying the batch size. Howev-
er, it is necessary to consider hyperparameters, such 
as batch size, to further improve the performance of 
this model.

Since the whole-lung field extraction model in 

this study uses pseudo-chest X-ray images as train-
ing data, the model may need to be adjusted for 
real-world patient data. Therefore, our future plan is 
to validate the performance of the whole-lung field 
extraction on real-world patient data and to adjust 
improve the performance of the model.

CONCLUSIONS

The whole-lung field extraction model developed in 
this study tended to over-extract intestinal gas in 
some cases, and the extraction performance varied 
depending on patient size. However, the DSC be-
tween the whole lung label image and the output 
image was >0.9 for all the test data, indicating that 
the whole-lung field can be extracted from the pseu-
do-chest X-ray image.
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