等質系の包絡リー群への全測地的埋込み

島根大学理学部紀要 Volume 18 Page 1-8 published_at 1984-12-25
アクセス数 : 1289
ダウンロード数 : 56

今月のアクセス数 : 67
今月のダウンロード数 : 0
File
c0010018r001.pdf 1.33 MB エンバーゴ : 2001-09-29
Title
等質系の包絡リー群への全測地的埋込み
Title
Totally Geodesic Imbeddings of Homogeneous Systems into their Enveloping Lie Groups
Title Transcription
トウシツケイ ノ ホウラク リー グン エノ ゼン ソクチテキ ウメコミ
Creator
Kikkawa Michihiko
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 18
Start Page 1
End Page 8
Journal Identifire
ISSN 03879925
Descriptions
The enveloping Lie group A = G x K_e of a connected analytic homogeneous system (G, η) contains a submanifold G x { 1 } which can be identified with G under the canonical imbedding. In this paper, we characterize the class of homogeneous systems imbedded totally geodesically into their enveloping Lie groups, carrying with their canonical connections. It is shown that the class of symmetric homogeneous systems and that of homogeneous systems of Lie groups are essentially the case, among K-semisimple homogeneous systems (Theorem 4).
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1984-12-25
Access Rights open access
Relation
[NCID] AN00108106