ファイル情報(添付) | |
タイトル |
A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach
|
著者 | |
収録物名 |
Communications on Pure & Applied Analysis
|
巻 | 18 |
号 | 3 |
開始ページ | 1359 |
終了ページ | 1374 |
収録物識別子 |
ISSN 1534-0392
EISSN 1553-5258
|
内容記述 |
その他
We study the nonlinear Schrödinger equation (NLS)
∂tu+iΔu=iλ|u|p−1u in R1+n, where n≥3, p>1, and λ∈C. We prove that (NLS) is locally well-posed in Hs if 1<s<min{4;n/2} and max{1;s/2}<p<1+4/(n−2s). To obtain a good lower bound for p, we use fractional order Besov spaces for the time variable. The use of such spaces together with time cut-off makes it difficult to derive positive powers of time length from nonlinear estimates, so that it is difficult to apply the contraction mapping principle. For the proof we improve Pecher's inequality (1997), which is a modification of the Strichartz estimate, and apply this inequality to the nonlinear problem together with paraproduct formula. |
主題 | |
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
American Institute of Mathematical Sciences
|
発行日 | 2019 |
出版タイプ | Version of Record(出版社版。早期公開を含む) |
アクセス権 | オープンアクセス |
関連情報 |
[DOI] 10.3934/cpaa.2019066
|