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A REMARK ON LOCAL WELL-POSEDNESS FOR NONLINEAR
SCHRODINGER EQUATIONS WITH POWER NONLINEARITY
—AN ALTERNATIVE APPROACH

TAKESHI WADA

ABSTRACT. We study the nonlinear Schrédinger equation (NLS)
Opu + iAu = iAuP" 1y

in R, where n > 3, p > 1, and A\ € C. We prove that (NLS) is locally
well-posed in H?® if 1 < s < min{4;n/2} and max{1;s/2} < p < 1+4/(n—2s).
To obtain a good lower bound for p, we use fractional order Besov spaces for
the time variable. The use of such spaces together with time cut-off makes it
difficult to derive positive powers of time length from nonlinear estimates, so
that it is difficult to apply the contraction mapping principle. For the proof we
improve Pecher’s inequality (1997), which is a modification of the Strichartz
estimate, and apply this inequality to the nonlinear problem together with
paraproduct formula.

1. INTRODUCTION

In this paper we study the Cauchy Problem for the following nonlinear Schrodinger
equation

Opu + iAu = f(u), (1.1)
(0, +) = wo, (1.2)

where u : R*™™ — C, and f(u) = iA|u[P~ u with p > 1, € C. The solvability of
(1.1)-(1.2) in the Sobolev space H®* = H*(R"™) has been studied in a large amount
of literature. Let 0 < s < n/2. It is well-known that the Cauchy problem (1.1)-(1.2)
is time locally well-posed in H® if s < p < p*(s), where p*(s) = 14+ 4/(n — 2s),
see e.g. [4,6-8,11-13,15,21]. On the one hand, the condition p < p*(s) comes
from scaling; the upper bound p*(s) is the critical exponent in H® from the scaling
point of view. On the other hand, the condition s < p comes from the regularity
of the nonlinear term. When we solve (1.1)-(1.2) in H®, we usually take spatial
derivatives of order s of the equation. Namely this lower bound is the condition
for the nonlinear term to be differentiable at least s times. However, this lower
bound for p is not necessarily optimal. For example, (1.1)-(1.2) is time locally well-
posed in H? if 1 < p < p*(2) = 1+ 4/(n —4). (For simplicity we only consider
the case n > 5.) This result was first proved by Tsutsumi [20] in the case where
1 <p<1+4/(n—2)with A € R, generalized by Kato [11,12] in the subcritical case
1<p<l+4/(n—4) with A € C, and recently settled by Cazenave-Fang-Han [3]
in the critical case p = 1 +4/(n — 4). The point is that we can first evaluate d,u
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2 T. WADA

instead of Aw, since the Schrédinger equation is second order in x and first order in
t. Once we obtain the estimate of J,u, then using the equation itself we can recover
spatial regularity.

For 1 < s < 2, Pecher [17] treated similar problem and showed that (1.1)-(1.2)
is time locally well-posed in H® if 1 < s < p*(s) (see also Fang-Han [5]). One of
main ingredients in his result is a modification of Strichartz estimates by which
we can replace fractional order spatial derivatives with half the numbers of time
derivatives in terms of Besov spaces. The result in [17] was extended to the case
where 2 < s < 4 and s/2 < p < p*(s) by Uchizono-Wada [23].

For a Banach space V', we define the V-valued Besov space Bg’a(R; V) by

By o(R;V) = {uec S (R;V); ||ull o (miv) < o0},

where # € R, 1 < ¢< 00,1 <a< oo and

. « 1/«
lullig vy = 19 50 wllzagmoy + {37 @105 %0 wllcam) }

g,
jz1

If o = oo, then we replace the second term with sup;-, 207 ¢ *¢ ullLa(r;vy- Here,
¢ and ¢; are Littlewood-Paley functions (see §2).
We also need the definition of admissible pairs.

Definition. Let n > 1. A pair of numbers (g, r) is said to be admissible if 2 <
q,r <ooand 2/q=20(r) :=n/2—n/r with (n,q,r) # (2,2, 00).

Now we can state modified Strichartz estimates by Pecher [17] as follows. The
statement includes a slight improvement by Uchizono-Wada [22, 23].

Theorem A. Let 0 < _ < 0 < 04 <1, and let (q,7) be an admissible pair with
2 < q,r < o0o. Then the solution u to the equation

O+ iAu=f, u(0,-) =wug (1.3)
satisfies the following estimates:
||u||L°°(R;H29) S ol 2o + ”fHBs,)z(R;LT') +miax ||f||L‘1*<9i)(R;LT*(9i))7 (1.4)
where 1/q.(0) = (1 —0)/q" and 1/r.(0) = (1—0)/r" +6/2;
||UHBg)Q(R;Lr)nLq(R;Bzfq)
S luollmze + 11515, | mizey +max(Ifll acs g o), (1.5)
where 1/q(0) = (1—0)/q' +0/q and 1/7(0) = (1 —0)/r' +0/r.

There are several equivalent definitions of the Besov space. For simplicity, let
1<p<oo,l1<a<ooand 0 < 6 < 1. Firstly, we can define the Besov space
BY ,(R;V) by the Littlewood-Paley decomposition as above; we denote this space
by Bi(R;V) in the introduction. Secondly, we can define the Besov space by real
interpolation; namely we define

By(R; V) = (LYR; V), W, (R; V))g.a-
Thirdly, we can define the Besov space by finite difference; namely we define

B3(R; V) = {u € LYR; V); [Jull ,(ryvy < o0},
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1/a
where ||ul|g,(ryv) = [JullLaryv) + (fooo lu(-+ h) —u||CL‘q(R;V)h*a071dh> /  We
have B1(R;V) = By(R;V) = B3(R;V) and the norms of these spaces are mutually
equivalent (see [18]).

To consider the time local theory, we need Besov spaces on intervals. Let I C R
be an interval. We can define the Besov space Bgﬁa(I ; V) in several ways. Firstly,
we can define this space by restriction, namely we define B1(I; V) = B1(R;V)/ ~,
where u ~ v means u = v a.e. on I. The norm on By (I;V) is defined by

ullB, vy = v|1,n:fu vl B, (R;v)-

Secondly, we can define By(I; V') = (LU(I; V), W} (I;V))g,o. Thirdly, we can define
B3(I; V) = {u € LYL; V); [|ul| py(r;v) < o0},

1/«
where [[ull gy = lullzacrwy + (J5 lul + ) w8y, h=0"2dn) " with
I, = {t € R;t,t + h € I}. For fixed I, we again have By(I;V) = Bo(I;V) =
Bs(I; V) with equivalence of the norms (see [19]). However, it is not clear whether
the norms on these spaces are uniformly equivalent with respect to |I|, namely the
length of I.

To prove the time local well-posedness of (1.1)-(1.2) for large data, we should take
|I| small enough so that the contraction mapping principle works. Therefore it is
important to observe how various constants in both linear and nonlinear estimates
depend on |I]. In the preceding works [5,17,22, 23], the proof of Theorem A is
based on the the restriction method and real interpolation, on the other hand the
nonlinear estimates are based on the finite difference. Hence it is important to
ensure the uniform equivalence of the norms in B;(I;V), i = 1,2,3, with respect
to |I].

Alternatively, we can only use restriction method, but if we take this approach,
we should multiply time cut-off by the nonlinear term, so that negative powers of
|I| appear from time derivatives of the cut-off function, which makes it difficult for
the contraction mapping principle to work.

However, in the preceding works do not seem to take this point into account.
Therefore, in the present paper, we will give an alternative proof of Theorem 1.1
below, which has already appeared in [5,17,23], in order to ensure the time local
well-posedness really holds:

Theorem 1.1. Let n > 3,1 < s < min{4;n/2} and max{1;s/2} <p<1+4/(n—
2s). Then for any ug € H?, there exists T = T(||ug||gs) such that (1.1)-(1.2) has a
unique solution u in C([-T,T]; H®).

This paper is organized as follows. In §2, we first introduce the definition of the
Besov space and summarize basic properties thereof. Next we introduce Lemma 2.4,
which is the key estimate in the proof of Theorem 1.1. This lemma is essentially
obtained in the preceding work [16], but we modify it so that we can directly apply
this estimate to our problem. In §3, we prove Theorem 1.1 when 1 < s < 2. The
proof for 2 < s < 4 is given in §4.

2. PRELIMINARIES

We first review the definition of Besov spaces. For the detail, we refer the reader
to [2,19]. We need Littlewood-Paley functions {¢;} on R; namely, let ¢ be a

o0
j=—00



4 T. WADA

function whose Fourier transform ¢3 is a non-negative even function which satisfies
suppp C {r € R; 1/2 < |r| <2} and Y52 ¢(7/27) =1 for 7 # 0. For j € Z,

S I=o
we set ¢;(-) = ¢(-/27) and o; = >7_ _ ¢p. If j =0, we simply write 1) = .
We also need Littlewood-Paley functions on R™. For 2 € R"™, we define ¢;(z) and

¢j(x) by

RS S and o (z) — 1 G
U(w) = e [ e and 6,00 = e [ e e ae

respectively. If n = 1, then these functions coincide with previous ones. For s € R
and 1 <7, a < oo, the Besov space B; ,(R") is defined by

B} o(R") = {u e S (R"); |ul

B: . (R") < %,
where #/(R") is the space of tempered distributions on R", and
; 1/«
{Z(2SJH¢J' *a “HLT(R"))Q} , a< oo,
By o(R™) = ¢ a2 ullr(rm) + izl
sup 2%(|¢; * ul - (r), a = oo.
j>1

[[ul

Here *, denotes the convolution with respect to the variables in R". We next
prepare the Besov space of vector-valued functions. Let 6 € R, 1 < ¢, a < oo and
V' a Banach space. We put

B (R;V) = {ue S (B;V); Jullpg, mv) < o0}

where
. o) 1/
lullge ,(rivy = ¥ *¢ wll Lorivy + {Z (2715 *¢ ull Lariv)) } (2.1)
J=1

with trivial modification as above if &« = oco. Here *; denotes the convolution in
R. In most cases, V' is a function spaces on R" like L"(R"), so that BY ,(R;V) =
Bg_’a(R; L"(R™)), whose elements are regarded as functions defined on the space-
time with variables (t,2) € R x R". This is why we use the symbols *; and *,.
For vector-valued Besov spaces, see [1,18].

Lemma 2.1. Letf € R, 1 < qg,q1 <00, 1 <a<oco. Let 1/g=(1—-08)/q0+ B/
with 0 < B8 < 1. Let V, Vi, Vi be Banach spaces which satisfy Vo NV, C V
and |ully < ||u||%,076Hu||€l for any uw € Vo N'Vi. Then we have BSO,OO(R;VO) N
BY (R:V1) C Bfi/ﬂ(R; V') with the inequality

1-p3 B
Hu”Bfi/ﬂ(R;V) 5 ||u||380 W(R;Vo)Hu”Bglya(R;Vﬂ'

Proof. See Lemma 2.2 in [16]. O

Lemma 2.2. (i) Let V be a Banach space. Let 1 < ¢ < p < o0, and § = 1/q —
1/p. Let 1 < a < oo. Then B;a(R; V) C LP*(R;V) holds with the inequality
lullpoorvy S llullge (riv)- Here, LP*(R; V') is the V-valued Lorentz space.

(ii) Let n > 1, 1 <r <rg < oo, and s =n/r —n/rg. Let 1 < a < co. Then
B} (R") C L"™%(R") holds with the inequality ||ul|Lro.o(rn) < |ullBs , (R)- Espe-
cially, if o <rg, then By ,(R") C L™ (R") holds with the inequality ||ul|zrorr) S
[[ul

By o (R")
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Proof. See Lemma 2.4 in [16]. O

In what follows, we write LI(I; L") = L(I; L"(R™)) etc. for short. Especially,
if I = R, then we simply write LY(L") = LY(R; L").

Lemma 2.3. Let f = i\u[P~ u with A € C, p > 1. Let q,qo,q1,7, 70,71, € [1, 0]
with 1/g = (p — 1)/qo + 1/q1, 1/r = (p—1)/ro+ 1/r1. Let 0 < 6 < p. Then
flu) € BZ’Q(L’) for any w € L% (L™) N Bglva(L”) with the following estimate:

||f(U)||Bg,a(Lr) < C||U||I;ol(yo)||U||Bglya(u1)-
Proof. The proof is essentially the same as that of Claim 4.3 in [16]. g

Lemma 2.4. Let 0 < 0 < 1. Let (q,r) and (v, p) be admissible pairs. Let (g, 7) be
a pair satisfying 1 < g,7 < 0o and 0 < 2/q§— 6(F) < 2(1 — ). Then the solution u
to (1.3) satisfies the estimate

[ull oo (20ynms , (ory < Clluollaze + Cllfllpe, oty + Cllflizzaceryy- (2.2)

Here, || flliz(Lacery) = 1 %2 fllracery + {3 ne l|on *zf”%q(ﬁ)}l/z Moreover, in the
right-hand side of (2.2),
(1) Ifl2(zacry) can be removed if 5(p) < 2(1 —0);
(i) I fllizzarry) can be replaced with || fllpo _ L=y if 0 <2/q—6(F) <2(1—0);
(iii) || flliz(acnry) can be replaced with Hf||l2 oy if T <25
(

(iv) I flliz(zacrryy can be replaced with ||f||l2(BO Lr)) if pf <F.

Remark. (i) Actually, we can show that u € C(R; H*?). To prove this, let {f;}52, C
S (RY™™) with || fi — flige, R70%a Il fx = fllizczacery) = 0. Let uy be the solution
AR

o (1.3) with f replaced by fr. Then up € C(R;H??). By (2.2), we see that
|luk — wll po< (R 20y — 0. Therefore u € C(R; H*?).

(i) If 2/q — 6(F) = 2(1 — ), then the homogeneous counterpart of (2.2) holds.
Namely, we have

||u||L°°(H29)ﬂBg’2(L"') < Clluo|l 20 + C”fHny,YQ(LP’) + C||f||l'2(Lci(Lf))> (2.3)

oo

1/2
where [Jull 20 = [(=2) ull 22, el go iy = (S52 s 165 50 ull3aqry) * and

> ) 1/2
||sz'2(LL7(L?)) = ( Z [k *a f||Li(LF)> :

Moreover, the modifications (i), (iii) and (iv) hold with I* and BY _ replaced by 12

and B0 o Tespectively.

Proof. Since the homogeneous estimate has already been proved by Pecher [17], we
may assume ug = 0. The inequality (2.2) has been proved in [16] when 2/q—(7) =
2(1 — 0), so we only consider the case (i)-(iv) in the statement of the lemma. By
the Fourier transform,

t ) oo itt _ Lit|€]?
e = [P gar = [ o e ar
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Here, f(7,€) denotes the Fourier transform of f in the space-time, whereas f(t,¢)
is the Fourier transform with respect to the spatial variables. We define v and vy
by

- = f(T, g)
t,§) =p.v.- ar 20 24
. =pe [ oIS (24)
and 09(¢) = 8(0,€) respectively, so that @ = o — el€°y. Using the formula
pv- [ {(r = [€7)} e dr = i sign(t)eil€” | we can write

— 00

1 [ N2 A
06,6 =5 [ st~ ) fit gar,

— 00
and hence

u(t) = vo(t) — Ut)v =

- / " sign(t — YUt — ) f(#)dt' — U (£)u.

By the formula ¢; #; ¢tlé1" = ¢itl6° §.(1€]2), we have ¢; #, U(t)vg = U(t)$;/2 *a vo.
Here ¢ /0%, = dj(—A) = ﬁgl(ﬁj(|§|2)¢%ﬁ. This is an abuse of symbol, but no
confusion is likely to arise. This notation matches the equivalence ||ul

B, ™
||’Q/AJ(—A)’LLHLv‘-‘y-(Z;il(25j/2||¢j/2>kxu||Lr)2) /2 See Lemma 2.3 in [16]. The Strichartz
estimate shows
5 *t U)vollLarry = U (£)d;/2 %2 vollLary S 1972 *2 voll 2
< ||¢j/2 *g 'U||L°°(L2)'
Here, in the last inequality we have used vy = v(0). Therefore we obtain
|65 *¢ ullLacrry + 10572 *o ull oo 22y S 105 *¢ VllLanry + 19572 *2 vl Lo (n2). (2.5)

By the Strichartz estimate together with the commutative law for the convolution,
we obtain [|¢; *; v||LaLry S 165 %t fll 2 (10 We next estimate [|¢;/2 5 vl Loo(L2)-

j+2
We put x; = Ziijfz ¢; and

oy L irsine B0 =10
550.9) = Gy [ TR

= M2 Ko (27,27 %).
The second equality is easily shown by the change of variable. For any positive
integer m, we can show the estimate |Ko(t,z)| < (14 [¢| 4 |z|)~™, which will be

shown at the end of the proof. We multiply ¢;(|¢]2) = %;(|€]2)¢;(|€[?) by the
both-sides of (2.4) and decompose as

e EP () ;

b (1€12)d =Dp.V.- T T
SRt €) = pove [ LG fir )
i XS (P = %5 (1) 5 o
e = e (CUL
or equivalently
1 o . / / ! !/

+ (Kj *t,2 X572 %2 f)(2).
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By the Strichartz estimate, we have
6572 *z vl Lo (r2) S NX5 % fll oo (nery + 15 *t2 X572 % flloee(r2)- (2.6)
For the low frequency parts 1 %, u and 1)(—A)u, we have the trivial estimate

19 #¢ ull ey + 1= A)ull ey S Nl pagory S NFllpar ooy
Hence, we obtain from (2.5)-(2.6) that

HUHLQC(H?")F]B(‘;Q(LT) S Hf”Bfr,’Q(LP/) +J, (2.7)

, 1/2
where J = (Z;‘;l(293||Kj *ta Xj/2 *o f||Loo(L2))2) . Therefore, it suffices to
estimate J in the following cases (i)-(iv).
Case (). Let d(p) < 2(1 — 0). We define (qgo,r0) by 1/q0 = 1/7 — 6, ro = p'.
By assumption, 2/go = 2(1 — ) — d(p) > 0. We also define (go, 7o) by Go = 4,
1/7o = 3/2 — 1/rg. Then by the change of variables, we see

— 9(n/2=1/go—n/270)j | Ko

151 Lo (L70y = <279,

HL‘?OJ(LFO) ~
since n/2 —1/§o —n/27g = 1/q0 — d(r9)/2 — 1 = —6. By the Young inequality and
the Holder type inequality for the Lorentz space together with Lemma 2.2, we have

oo

) 1/2
IS (@K o oy 72 o Fllzanzroy)?)

Jj=1

S (e fliw =) S (2 5o e, w)
j=1 =1 ~',

o ) 1/2
S %o fllzr ooy + (S5 52 F130 1)) = Wfllges, ooy
j=1 ”’ ’

1/2

Since v/, p’ < 2, we have lQ(Bg,VQ(L”/)) ) 32,72(12(L/’/)) =Bf ,(BY ,) D Bg,’Q(LP').
Therefore, we obtain J < Hf”Bj, (L) and hence we can drop J from the right-
hand side of (2.7). ’

In what follows we assume §(p) > 2(1 — 6); if not, the desired (actually better)
result follows from Case (i).

Case (ii). Let 0 < 2/ — 0(F) < 2(1 — 6). Then we see 6(p’) < —2(1 —0) <
§(7). For 0 < B < 1, we define (qo,70) by 1/rg = (1 — 5)/F + B/p' and 1/qp =
(1=p)/q+ B(1/7" = 0), or equivalently d(ro) = (1 — )d(F) + Sd(p’) and 2/qo =
(1—=05)(2/3—6(F)) +2B8(1 — 0) 4+ 6(rg). We can choose § satisfying —2(1 — 0) <
0(rp) < min{0,d(7)} and 0 < 1/gp < 1. Indeed, if 7 < 2, then we choose 8 ~ 0 so
that 6(rg) ~ 6(F) > 2(1 — ) and that 1/gp ~ 1/G > 0; if # > 2, then we choose §
so that 7o ~ 2, and for such § we have 2/qo ~ (1 —3)(2/q—0(7)) + 28(1 — ) > 0.
In both cases, we see 1/q9 < (1 — 8)/q+ B/v" < 1. Moreover we can easily check
that 0 < 2/(]0 - 6(7’0) < 2(1 — 0) We define (Ljo,’f“o) by qgo = qé, 1/7:0 = 3/2 — 1/1"0
as in the previous case. Since || K| pao.1(L70) = C270%9J with

—e=n/2—1/Go—n/2Fo+ 0 =1/q0 — 6(r9)/2 — 1+ 6 < 0,
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we obtain

e}

) 1/2
T 5 (N o wroy 152 %o Fllzao 1r0)?)
j=1

o~ e ) 1/2
S (22 /2 *a fHqu,oo(Lro>) S S_1>111>H><j/2 *a fllLaooe (Lro)-
j=1 iz
Let 1/ = 1/qo + 0 = (1 — 8)/g + B8/7. By Lemmas 2.1 and 2.2, we have
L0:°(Lm0) D Bﬁe (L) D BY (L")N Bg,)Q(LPl). From this we obtain the follow-
ing estimates, thereby obtaining the claim:

J S Sup{\\Xj/z 2 fllo _my + IXG/2 *a f”B:,’Q(LP')}
S ”f”BO ) T 1o, ey (2.8)

Case (iii). Let 7 < 2. We choose (qo,79) = (g,7) and define (Go, 7o) by Go = q{,
1/7g = 3/2—1/ro. Then, similarly as in Case (i), we see J < || f|l12(za0.> (£r0)) since
n/2—1/G—n/2fg =1/G—6(7)/2 —1 < —6.

Case (iv). Let p/ < 7. We may assume 2/q — §(7) = 2(1 — 0), since (2.8) gives a
better estimate if 2/ — 6(7) < 2(1 — 6). For 0 < 8 < 1, we define (qo,70), (¢o,70)
and 4 as in Case (ii). We can choose 8 such that 1 < g < oo and p/ < 19 <
min{2;7}. Then as in Case (ii), we obtain J < || f[/;2(za0.>(Lr0)). By Lemmas 2.1
and 2.2, we have L%:°(L™) > BYY (L") > BY (L") N BY, ,(L*). This implies
T S llesg oy + 1 llgo, | (porys since (B, z(L" )) D BY, (L.

Finally we show Ky(t, x) < (14 ¢l + |=])~™. Indeed, on the support of the
integrand of Ko, we have |7| & [1/4,4] and [£]? € [1/2,2], so that |7 — [£]?| > 1/4.
Therefore f|77‘£‘2‘<6 e do(|€12) (1= %o(7)) (T —|€]?) ! dr is bounded. On the other
hand, we see Xo(7) = 0 when |7 — [£|?| > 6, and hence

[ Go(lEP) (1= xo(7) , [ e dolle?)
IT—1€1|1>6 IT—1£1%|1>6

i~ 12P) it~ I€P)
_ osien(0)et€P g 12y [ ST 4o
san@)e (el [ T ar

This is also bounded, and hence we have proved the boundedness of Ky (¢, x). More-
over, for 1 <[ < n, the integration by parts shows

1 et i€ 0 é0(|§|2)(1_>20(7-))

21 Ko(t, ) 27r)1+" //Rl+n T+ % YD drdg
1
(2m)tn

et iz€ $6(|€|2)(1 - )A(O(T»
(2m)ttn //Rl+n o 2&{ T — [¢]?

o(l€*)(1 — fco(T))}
+ drdg,
(T —1§%)?
and the right-hand side is bounded as above. Repeating this, we can obtain the
desired estimate. ]
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3. PROOF OF THEOREM 1.1—CASE s < 2

We divide the proof of the main theorem into the cases (i) 1 < s < 2 and (ii)
2 < s < 4. The case s = 2 has already been treated by Tsutsumi [20], Kato [11,12],
and Cazenave-Weissler [4]. We may assume 1 < p < s because the case p > s has
already treated by Cazenave-Weissler [4].

In this section we consider the case where 1 < s < 2. We put Kk = 1—(n—2s)(p—
1)/4. By assumption, we have 0 < k < 1. Let (¢,r) and (v, p) be admissible pairs
which satisfy max{1 — 2x;0} < 0(r) < min{2(1 — x);1} and 6(r) + 6(p) = 2(1 — k).
Let 1/qo = 1/v'—1/q = k. Weput X*® = L*°(R; Hs)ﬂBZ,/;(R; L™). For an interval
I C R, weset X°(I) = X°/ ~, where v ~ v means v = v a.e. on I. For each
equivalence class [u] € X*(I), its norm is defined by ||[u]|| x+ () = inf{||v||xs;v ~ u}.
For R > 0, we put B = {[u] € X*(1); ||[u]| x+) < R}. For [u],[v] € Bg, we define
the metric d([u], [v]) = ||u — v| Lo (1;22)nLa(1;L7)-

Lemma 3.1. (Bg,d) is a complete metric space.

Proof. ices to show that Bp is closed in L>(I; L?)NL4(I; L™). To this end, we shall
show that if {[uy]}22 is a sequence in Bg with d([ug], [us]) — 0, then [us] € Bg.
Let € be an arbitrary positive number. We may assume that ||ug||xs < R+e€, so that
there is a subsequence {uy()}72; which converges *-weakly in L*>°(R; H*). We put
Uy = WH-1limy 00 upy € L°(R; H?). Since the sequence {uy()}i2; is bounded in
B;,/QQ(R; L") and converges to u, in ./ (R'"*™), we can easily show that {uy}52,
weakly converges to u, in B;{;(R; L"™). Hence we have u, € X*® and

Judlxs < lm [lugpllx: < R+e.
=00

On the other hand, {u()}72; converges to un, in L>(I; L*)NL%(I; L"). Therefore,

u,(t) must coincide with us(t) a.e. t on I, which implies [u.] = [us], so that
ool x= (1) < llusllxs < R4 €. Since € > 0 is arbitrary, we have [|[uoc]||x+(1) < R,
namely [us] € Bp. O

We take 0 < T < 1 to be determined later and put I = [-T,T]. Let ¢ € Cg°(R)
be a function which satisfies ((t) = 1 if |[¢| < 1 and ((¢) = 0 if |¢| > 2. We put
Cr(t) = ¢(t/T). We define the operator ® by

{@(u)}(t) = Ut)uo +{U @ f(u) } (),
where (U ® g)( fo (t—t")g(t') dt’. With suitable choices of R and T', we show
that @ is a contractlon mappmg on (Bg,d). We similarly define ®7 by
{Or(u)}t) = Ut)uo +{U @ G f(u) }(¢).

Clearly, {®7(u)}(t) = {®(u)}(t) for t € I, and hence ||[®(u)]l|xs ) < [P (w) x-.
By the paraproduct formula,

Crf = (Wa e Cr) - (haxe )+ (Yres e Cr) - (dn *e f)
k=3

+ D (ki Cr) - (g f) + Z(xk # Cr) - (dn *¢ f)

k=5 k=3

= (Crf)L + (Crfun + (Crf)uL + ((r fun. (3.1)
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Here, we recall the notation y, = 525_2 ;. In what follows, f denotes the

Fourier transform of f with respect to ¢t. Clearly, we have

Fildy #0 (CrPund(r Z/ b3 (1) (r = T)u(r)er(r — ) (') dr

If ¢ (7)hr_3(T — 7')pr(7") # 0, then roughly speaking we have || ~ |7/| = |7 — 7.
More precisely, we have |7 — 7/| < 282 2k=1 < |7/| < 2k+1 and 277! < |7] <
27+1 From the first two inequalities, we have 2¥=2 < |7| < 282, This inequality,
combined with the third one, implies j — 2 < k < j + 2. Therefore we obtain

Jj+2
¢ % (Crfen = D &y {(Gros i Cr) - (S0 )}
k=(j—2)V3
We can similarly obtain
Jj+2
6% (Crfue = D &5 {(dr % Cr) - (s i )},
k=(j—2)V5
b (Crfum = Y b0 { Ok *e Cr) - (0r % )}
k=(j—4)V3

We also have 9 ¢ (¢7f)uu = ¥ *¢ ((rf)ur = 0.

Let (70, p0) be another admissible pair with max{2(1 — k) — s;0} < 8(pg) <
min{2(1 — k);2 — s}. We put vg = 2n/(n — 2s), so that we have the embedding
LY D H? by the Sobolev inequality. We also put 7 = vg/p, so that §(F) =
s —2(1 — k). We choose g such that 1/§ = k — € with sufficiently small € > 0, so
that 0 < 2/ — 6(8) < 2 — s. Therefore, from Lemma 2.4 (i)-(ii), we obtain

7 (u)llx: < lluollm= + ||(CTf)LH||B:,/22(Lp') + 11 el o)

G Hre + Crfue + Crfumll g ey
0
Apart from LH part, for LL, HL and HH parts we do not need additional space

like BY (L"), since 6(pg) < 2—s. We begin with the estimate of (¢7f)Lu. By the
Holder and the Young inequalities, we have

2
@5 ¢ (Crfumll Lo (rory < Z ¢rllLoo [Pk *¢ fllparerys
k=(j—2)v3
and hence
(¢ frnll g ey S Slerlize £l gerz oy S TN sz ey
Since 1/p" = (p — 1)/1/0 + 1/r, Lemma 2.3 shows
K K —1
Gl gy S T g Wl gy S T e Nl

(3.2)
On the other hand, we have

1(¢r Nrallsg ,ry S Nrllcallfllzewn = MlCrllzallelfoo peo)
ST Nullf o e (3.3)
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by the equality ||(r|/za = CT*~¢ and the inclusion L** D> H*. In the same way, we
obtain

1(Cr f)nell 5
1 f)eell

S/2 (L”O) ~ HCTHB /2 ||fHLoc(LP0)7

S/2 (LPO) ~ HCTHL'YonHLOC(L"O)

For HH part, we have

I Dl iy & 322 (2 M0k 060 0w D)
=1 k=l

70
191 g Zfl(ZHx'« Grlg) -
=1

By the Schwarz inequality, we see

o0 2 o0 oo
(Z Xk *¢ CT||LW6) <D 2Ry 2Ky G2,
k=l

k=l k=l

o0
—el k
=027y 2% xp i Gl
k=l
so that

IGr Dl 1) S W L%)ZW ”sz’“nxk “ Gl

= ||f||ioc(LP6) Z 26k||Xk *¢ CT”i,’Yé 22(376)1
k=1 =1

= C”fHLoo(LﬂO) ZQS}CHX]C *t CT”i'\/é

< licrll?, 0 ||f||

LOO(L”O
Collecting these estimates, we obtain

(¢ f)ie + (o f)ne + (CTf)HHHBe/2 @by S erllg

5/2 ||f||L<>o LPO)'

We put kg =1/ —s/2 = (2 —(po) — $)/2. By assumption, we have 0 < kg < k.
By the definition of the Besov space, for 0 < T < 1, we can show HCTHBW < T,

On the other hand, we define 141 by 1/py = (p — 1)/vo + 1/v1, or equ1valently
(1) = 2(1 — k) — 6(po). Since 0 < §(r1) < s, we have the embedding L** D H®.
Therefore, we see || f|| . < Jul o lull o < Jlull%y., and consequently

[(¢r frn + (Cr fun + (¢ funl B2 (L7b) ST ulle- (3.4)

Thus, from (3.2)-(3.4) we obtain |7 (u)[|lx: < Clluo]lm- + CT™|ul%., so that
1@ (W)l xs1) < Clluo||gs + CT™ RP

for [u] € Bg. If we choose R and T such that C|lug||g: < R/2 and CT* RP~! <
1/2, then we see that ® maps Bpg into itself.
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We can estimate the difference ®(u) — ®(v) more easily. Let [u],[v] € Br. By
the Strichartz estimate together with the inequality

[f(uw) = f(0)] < Cmax{[ul; [v]}P~u — ], (3.5)
we obtain the following;:
[®(u) — (V)| Lo (r;22)nLar;ory S I1f(w) — f(v)”L"f'(I;LP/)
S T max{||ull o (1,54 ||U||L°°(I;H-“)}p71||u —0llpa(z;Lr)
S TORPHlu = | oo (1,02)nLa (1) (3.6)
Therefore, if T is sufficiently small, then ® is a contraction mapping on (Bg,d).
By the contraction mapping principle, there exists a unique fixed point of ® in By.

Therefore we have proved the existence of the solution to (1.1)-(1.2) in X*(I). The
uniqueness of the solution in C'(I; H*) was proved in [13]. O

4. PROOF OF THEOREM 1.1—CASE 2 < s < 4

In this section we consider the case where 2 < s < 4. As in §3, we put Kk =
1—(n—2s)(p—1)/4. Let (¢q,r) and (v, p) be admissible pairs as in §3, namely they
satisfy max{l — 2x;0} < 0(r) < min{2(1 — x); 1} and §(r) + J(p) = 2(1 — k). We
define ro by 1/rg = 1/2 — (s — 2)/n, or equivalently d(ro) = s — 2. We put

Y* = L>®(R;H*) "W (R; L) N L>®(R; H2) N WL (R; L™) N B;{QQ(R; L.
For I = [-T,T) with 0 < T < 1, we set Y*(I) = Y*/ ~, where u ~ v means u = v
on I, and ||[u]|lysry = inf{|v||ys;v ~ u}. Similarly as Lemma 3.1, we can show
that Br = {[u] € Y*(I); ||[u]| ver) < R,u(0) = ug} is a complete metric space with
metric d([u], [v]) = ||u = v||Le(r;12)nLa(r;1m)- We define the operator W by

{Wr(u)}(t) = Ut)uo +{U @ (G Fr + C2f (u0)) }(£). (4.1)

Here, Fr(t) = f; Cr()0y f(u(t'))dt’ and (r(t) = ((t/T) is the same as in §3;
especially (a(t) = ((t/2), so that (ol = ¢r. If ¢ € I, then Fr(t) = f(u(t)) — f(uo),
so that {Ur(u)}(t) = {®(u)}(t). With suitable choices of R and T, we show that
® is a contraction mapping on (Bg,d). Since Wy (u) satisfies the equation

(Or +iA)Vr(u) = G2Fr + Caf (uo),

it suffices to estimate
10:9r(u)l[xs-2,  [Wr(u)llLee(r2)nraery, and |[|GFr + G2 f (uo)llz

instead of |Wr(u)|y:. Here, we recall that X*=2 = L>®(H*=2) N B;/Qz*l(LT), and
we set Z = L°(L?) N L>(L™). We should distinguish the cases 2 < s < 3 and
3 < s < 4, since we have to estimate ||0;Ur(u)|| xs—2 differently.

We begin with the case where 2 < s < 3. Taking the time derivative of (4.1), we
obtain

0 (u) = U()io + U @ (Crof(u) + G Fr + f (uo)),
where 19 = —iAug + f(ug). From Lemma 2.4 we have

10:¥r(u)l[ x> < ol o2 + 1< 0 f]

+ | &Fr|

s/2-1
Bw’,2

(Le")

32{22—1([/,/) + ||<2f(UQ)| Bi’/Qz_l(Lp/)' (42)
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We shall estimate each term of the right-hand side. We recall that vy = 2n/(n—2s).
We define v5 by 1/2 = (p — 1)/vg + 1/v2, or equivalently 6(v2) = 2(1 — ). Then
we have the inclusion Hj 2 O H® 2% 5 H*, thereby obtaining ||f(uo)||g:-2 <
lull 2o lull s < llullfy.. Therefore

o]l -2 < ol e (1 + [Juolla=)? (4.3)
We recall that 1/gq90 = 1/v' —1/q¢ = k. We choose a number y > 0 such that
0 <min{l/q;s/2—1}—p < 1. Weput 1/¢s =1/9'—1/g+pand k1 = 1/q1 —s/2+1.
Then, we see
k1=2—-8/2—-1/y—1/g+p=r+p—s/2+1,

so that 0 < k1 < k. By the Leibniz rule together with Lemmas 2.2 and 2.3, we
have

l|C70: f|

ny{,z;l(Lpl) S [¢r Lo [0 f] B;/;*l(Lp’) + ¢ 321/?2*1||3tf||L<I/(1*qu)(Lﬂ/)

1 -1
< TH”UHioo(HgO)”W B/2(Lr) + Tm||UHioo(HgO)||u||35;1(1;r)

(4.4)

-1
< Tm”””ioc(Hgo)”M 33{22(L1v)~

We proceed to the estimate of ||62FT||BS/271 By the inclusion
~'.2

L'y
s/2=1,7 ’
BN (L) > Wh(L¥)
and the relation (¢ = 0 together with 1/¢’ > k, we see
||é2FT‘|B§{?2_1(Lp/) S ||¢.2FT||L7/(L/J/) + HéQFT”L"’/(LP/)
S ||CTHLq’ ||8tf||L<1(LP')
I —1
ST ||“H1£oo(H30)||8tu||L<1(L"')a (4.5)
162 f (o)
From (4.2)-(4.6), we obtain

1009 (u)| xco-2 S Nluollzz= (1 + lluollm=)P~" + T lul

Similarly (actually more easily), we have

-1
o2 ey S 1 (Wo)llLs S lluollzeo luollzr S Hluollzr.. (4.6)
Y

Ve (4.7)

107 ()]l o (w2)nza(ery S llwollee + G Frll Ly pory + 1€ f (wodll o 1ot
K —1
S lluollzz + T*ull o 2 ) I10etellLacery + lluol-

< Nuollzre (1 lfuoll =)~ + T¥||ullf-.. (4.8)

We next estimate ||(2Fr||z. Using the integration by parts, we have
t
Fr(t) = [ G20 (f(ult) - fuo)) d
0

= Cr(){f(u(t)) — f(uo)} — /O Cr(){f(u(t) = f(uo)} dt'. (4.9)
Therefore, if we show

1f (u(®)) = fuo)llL2nrro S 1E*lull¥-, (4.10)
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then we easily obtain [|[Fr|lz < T%||ul
assume that ¢ > 0. We see

Y. We prove (4.10). For simplicity we

t
[[u(t) — uoll 2 S/ 100 u(®) | L2dt” < tlullwy w2 < Hlullys,
0

and hence [|u(t) —uo|[v2 < [lu(t) —uol/Fs |u(t) —uo| 32" < t*|ully+ by interpolation.
Therefore, by the inequality (3.5), we have

1F () = f(uo)ll 2 S Nullf < proylult) = uollzee < t™[lullf-..

In the same way we can obtain ||f(u(t)) — f(uo)|lrro < t%|lullf-., and hence we
obtain (4.10). On the other hand, like (4.3), we have ||Caf (uo)llz S ||f (wo) || gs—2 S
lluo || s (1 + |Juol| 75 )P~ 1, since L™ D H*~2. Therefore, we obtain

12 Fr + Gaf (uo)l z < T [lullfe + lluoll = (1 + [luoll )"~ (4.11)

Consequently, from the estimates (4.7), (4.8) and (4.11) we obtain
17 (w)llys < luollms (1 + [fuoll )"~ + T JullF..,
so that
@)y« (ry S lluollzzs (1 + lluollm=)P~" + T [[ullf. -

The estimate (3.6) still holds for s > 2. These estimates show that if R > 0 is large
and T' > 0 is small, then ® defines a contraction mapping on (B r,d). Therefore, by
the contraction mapping principle, there exists a unique fixed point of ® in Y*(T).

We next consider the case 3 < s < 4. Let (y1,p1) be another admissible pair
satisfying max{4 — 2k — s;0} < §(p1) < min{2(1 — k);1;4 — s}. From Lemma 2.4
together with paraproduct formula, we have

10097 ()= Nl + 1GrOu o
+ 1Croi frullge ()

q1,00

+ 1(¢r0e frr + (Croef)ne + (CTatf)HH||Bs{22—1(Lp;)

s5/2—1
BN (Le)

+ 1&Fr|

BS{Z;I(L/J’I) + [|Ca.f (uo)] B2 (LA (4.12)
Y1 v1:2

Like (3.1), the subscripts L and H mean hi and low-frequency parts. The exponent
71 is defined by 1/71 = (p — 1)/vo + 1/ro, or equivalently 6(71) = s — 4 + 2k, and
q1 is so chosen that 1/q; = k — e with sufficiently small € > 0. We shall estimate
each term of the right-hand side. We define v5 by 1/p] = (p — 1)/vo + 1/v3, or
equivalently d(v3) = 2(1—k)—0d(p1). By the assumption on p;, we have 2 < v5 < ry,
and hence we have the inclusion L** D L2NL"™ > H*~2. We can show the following
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estimates (4.13)-(4.15) similarly as (3.2)-(3.4) respectively:
1Crduf il s gory S el 00
< T“||u||}£;1(HgO)Hu||Bs/z(Lr), (4.13)
1(Cr0efLnllpy, _(zr) S ISl l0nf |l Lo )
ST eHuHLm HZ ) [0¢ul Loo (Lro). (4.14)
1(¢r0: f)rL + (Croef)ur + (CTatf)HHHBs/z—l(Lp’l)

S ll¢r

Bl )

35{2;1 HatfHLoo (LP1) S T””2||u||LOO(H2 )Hatu||L°°(L2mL"0)- (4-15)
Y1

Here, ko = 1/v1 — s/2 + 1, which satisfies 0 < k2 < k by assumption. Similarly as
in the previous case, we have

G2 Frll,

1S2.f (o)l ) < |luoll%e - (4.17)

From (4.12)-(4.17), we obtaln

1069 (u)[ xco-2 S Nuollzrs (1 + lJuoll )P~ + T2 |ullf.. (4.18)
We can estimate || W7 ()| poo(r2)nra(zry and [[(aFr 4 G2 f(uo) ||z in the same way as
the previous case, so that we can obtain

@ )lly=(ry < luollzzs (1 + lluollm=)P~" + T [[u]l5. -

Therefore, for suitable R and T, ® is a contraction mapping in (B Rr,d). By the
contraction mapping principle, there exists a unique fixed point of ® in Y*([).

We have thus proved that there exists a unique solution u € Y*(I) to (1.1)-
(1.2). Finally, we show that w € C(I; H®). To this end, we prove ®(Y*(I)) C
C(I; H®) N CH(I; H*=2). Tt suffices to show that f(u) € C(R;H*"2) for each
u€eY® Let 0 <e<min{4d—s;2(1 — )} and top € R. Similarly as above, we have
1f )| rs—2te S Hu||{j;1||u||H3;2+e < |lully. by the inclusion L0 N HS 2% > HZ .
Using this estimate together with (4.10), we see

1 (u(®)) = f(ulto) o2 S [t = tol**/ 72 [y — 0
as t — 0. Therefore we obtain that f(u) € C(R; H5™?2). O

5/2 l(L/Jl < THU”LOQ H2 )HatUHLoo(LszuO), (416)
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