球面上の球面束へのS^<1->作用

島根大学理学部紀要 Volume 15 Page 9-16 published_at 1981-12-20
アクセス数 : 1259
ダウンロード数 : 77

今月のアクセス数 : 60
今月のダウンロード数 : 0
File
c0010015r002.pdf 937 KB エンバーゴ : 2001-09-29
Title
球面上の球面束へのS^<1->作用
Title
S^<1->Actions on Sphere Bundles over Spheres
Title Transcription
キュウメン ジョウノ キュウメン ソク エノ S1- サヨウ
Creator
Matsunaga Hiromichi
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 15
Start Page 9
End Page 16
Journal Identifire
ISSN 03879925
Descriptions
In this paper, we shall construct compact Lie group actions on total spaces of orientable sphere bundles over spheres. All actions considered in this paper preserve bundle structures, that is, each element of groups gives a bundle map. The author intends to construct actions on all sphere bundles over S^n for n≦8. For n > 8, actions on S^k-bundlles over S^n are given for the case of k ≧ n and other particular n, k. Thus we can conclude that these bundle spaces have positive degrees of symmetry.
In section 1, we construct actions on S^3-bundles over S^4 and S^7-bundles over S^8. By means of reductions of structure groups, we can give S^1-actions on S^k-bundles over S^n for k≧n. Using well-knowm results from the homotopy theory of spheres and rotation groups, we construct actions on S^k-bundles over S^n for k<n≦8 in section 2. In the last section, we construct actions on S^<4s-1>_bundles over S^<4s> of types B_<l,o>, B_<o,l> and B,εk m k, where ε=1 if s is odd, ε=2 if s is even, m-(2s-1)!/2 and k is an integer.
The technique used in this paper is quite homotopical and actually elementary. Our results are essentially due to the computatioms of M. A. Kervaire, [3] and we shall use it frequently in this paper.
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1981-12-20
Access Rights open access
Relation
[NCID] AN00108106