関数空間の一様構造及び連続条件

アクセス数 : 974
ダウンロード数 : 54

今月のアクセス数 : 36
今月のダウンロード数 : 0
ファイル情報(添付)
b001000200k001.pdf 1.61 MB エンバーゴ : 2002-11-27
タイトル
関数空間の一様構造及び連続条件
タイトル
Uniformities for Function Spaces and Continuity Conditions
タイトル 読み
カンスウ クウカン ノ イチヨウ コウゾウ オヨビ レンゾク ジョウケン
著者
苅部 孝
収録物名
島根大学教育学部紀要. 自然科学
Memoirs of the Faculty of Education, Shimane University. Natural science
2
開始ページ 1
終了ページ 12
収録物識別子
ISSN 05869943
内容記述
その他
Using uniform structures, Dieudonne [3] systematized a number of results on topologies for homeomorphism groups which had been published till 1947. Since then, as to properties on continuity, only sufficient conditions have been given under special uniformities.
Let X be a set, Y be a uniform space endowed with a uniform structure U, S be a family of subsets of X, and F be the family of all mappings of X into Y. For each set A∈S and each entourage U∈U, let W(A, U) denote the set of all pairs (u, v) of mappings of X into Y such that (u (x), v (x)) ∈U for all x∈A. Then {W(A, U)│A∈S, U∈U} form a fundamental system of entourages of a uniformity W on F under the proper conditions on S (Theorem 1).
The purpose of this paper is to find the most general conditions possible, expressed by the properties of S and U, that satisfy the following basal conditions on continuity with respect to the uniformity W : i) the mapping (u,x) →u(x) of C × X into Y is continuous, where X is a topological space and C is a family of continuous mappings of X into Y (Theorems 2 and 3), ii) the mapping (u, v) → uv of C X C into C is continuous, where X and Y are the same uniform space and CC⊂C (Propositions 4 and 5 ; Theorems 4 and 5). These are the basal conditions often required to be satisfied for semigroups of continuous transformations of a uniform space.
From our results, it is conjectured that if a uniformity W on F satisfies these basal conditions for the family of all continuous mappings of a space into itself which has several properties similar to those of euclidean spaces, then W must be the uniformity of compact convergence. In fact it is affirmative (cf. Karube [5]).
For topological terms and notations we follow the usage of N. Bourbaki [2].
言語
英語
資源タイプ 紀要論文
出版者
島根大学教育学部
The Faculty of Education Shimane University
発行日 1968-12-28
アクセス権 オープンアクセス
関連情報
[NCID] AN00107941