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UNIFORMITIES FOR FUNCTION SPACES AND
CONTINUITY CONDITIONS

By

Takashi KARUBE

Using uniform structures, Dieudonné [3] systematized a number of results
on topologies for homeomorphism groups which had been published till 1947.
Since then, as to properties on continuity, only sufficient conditions have
been given under special uniformities.

Let X be aset, Y be a uniﬁorm space endowed with a uniform structure
11, & be a family of subsets of X, and % be the family of all mappings of
X into Y. For each set AE® and each entourage UEW, let W (A, U) de-
note the set of all pairs (%, v) of mappings of X into Y such that (u(x),
v(x)) EU for all z&A. Then {W(A, U) |ACS, USU} form a fundamental
system of entourages of a uniformity 2L on & under the proper conditions on
& (Theorem 1).

The purpose of this paper is to find the most general conditions possible,
expressed by the properties of & and 1, that satisfy the following basal
conditions on continuity with respect to the uniformity 2: i) the mapping (u,
z)—>ul(x) of €XX into Y is continuous, where X is a topological space and
€ is a family of continuous mappings of X into Y (Theorems 2 and 3), ii)
the mapping (#, v) > uv of €XE€ into € is continuous, where X and Y are
the same uniform space and €€CE (Propositions 4 and 5 ; Theorems 4 and
5). These are the basal conditions often required to be satisfied for semi-
groups of continuous transformations of a uniform space.

From our results, it is conjectured that if a uniformity ¥ on §F satisfies
these basal conditions for the family of all continuous mappings of a space
into itself which has several properties similar to those of euclidean spaces,
then 28 must be the uniformity of compact convergence. In fact it is affirm-
ative (cf. Karube [5]). ‘

For topological terms and notations we follow the usage of N. Bourbaki [2].

8§ 1. Uniformizability conditions.

Theorem 1. Let X be a set; let Y be a set endowed with a uniform structure
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U which is not the coarsest ; let & be a family of subsets of X ; and let § be
the family of all mappings of X into Y. For each AES and each U S, let
W (A, U) denote the set of all pairs (u, v) of mappings of X into Y such that
(u(z), v(z))EU for all x&A. Then, as A runs througsh & and U runs
through 1, the sets W (A, U) form a fundamental system of eniourages of a
uniformity on § if and only if

1) & is non-empty, and

2) for any two sets A1, Ao there exists a set As=S such that A3 DA,
UAQ.

In the case where W is the coarsest uniformity, the condition 2) is superfluous,
and the corresponding uniformity on % is the coarsest one.

Proof. Put B={W (A, U) |AES, U1}, It is easy to see that the above two
conditions 1) and 2) are sufficient for ¥ to be a fundamental system of en-
tourages of a uniformity on F. We shall show the necessity. In fact

a) the condition 1) is equivalent to the fact that every W (A, U) &P contains
the diagonal set in X, and

b) if 11 is not the coarsest uniformity, then the condition 2) is equivalent
to the following

2)7 for any two sets W(Ay, Uy), W(As, Us) EB there exists a set W
(As, Us) &% such that W(As, Us) CW (44, Uy) "W (A, Us).

We shall only prove that 2)7 implies 2). Since I is not the coarsest
uniformity, there exists an entourage UEWl different from Y XY. For the
entourage U and any two sets A, A2E&, there exist an entonrage U’ &1l
and a set A3E& such that W (A3, U’) CW(A1UA., U). If AjUA2 is not
contained in As, take a point a=A;UAs—As and two points p and ¢ of YV
such that (p, ¢) &€U. There exist two functions u, v&% such that » and v
coincide on As and u(a) =p, v(a) =q. Then (u, v) € W(A{UAs, U) while
(u, v) EW (As, U’). The contradiction shows that Az3DA;A,.

Definition 1. Each family of subsets of X which satisfies conditions 1) and
2) in Theorem 1 is called a u-family.

The following Proposition 1 shows that our uniformity on $§ is essentially
the same as the uniformity of &-convergence on § (cf. N. Bourbaki [2]). The
former is rather more direct than the latter for us to define uniformities on
function spaces. :

Proposition 1. Let X, Y, U and § be the same as those in Theorem 1. Let
& be a u-family of subsets of X ; let &% be the family of all sets that are
finite unions of sets belonging to © ; let &% be the family of all subsets of
sets belonging to &%, As A runs through &, ©* and ©**% respectively and U
runs through U, the sets W(A, U) form a fundamental system of entourages
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of a uniformity on X. Let T, % and T denote the uniformity respectively.
Moreover let i’fﬁ, B+ and T** denote the uniformity of &-, &*%- and ©F*-
convergence on § respectively, and for each ACS let Wy denote the uniformity
of {A}-convergence on §F, where {A} is the family consisting of the set A only.
Then '

U = Tk = ok = T = Tt = W = | 40 Wa.

Proof. It is well-known that %:%*:@**, and it is easy to show that 1)
Uaee Wy is a uniformity on ¥, 2) Uace Wy is the least upper bound of {W,y
|A=@} in the family of all uniform structures ordered by the relation “incl-
usion”, consequently it coincides with 8, 3) W=3B, and 4) Wk = To* and T+
=J** as well.

As simple cases where 20 determines & and 11, we consider the case where
W is the coarsest or the finest uniformity in the following Proposition 2 and
Proposition 3, where the notations keep the same meanings as in Proposition 1.

Proposition 2. The following conditions are equivalent :

1) I is the coarsest uniformity on 3,

2) the topology & on § indnced by S is the coarsest one,

3) & consists of the empty set only or W is the coarsest uniformity on Y.

Proof. It is evident that 1) implies 2), and 3) implies 1). To show that 2)
implies 3), suppose that & has a non-empty set A. If there exists an entourage
UEU different from Y XY, we can take two points p, ¢ of Y such that (p, q)
& U, then for any fixed point @ of A we can define two functions u, vER
with value p, ¢ at a respectively and the same value otherwise. Now by 2),
we have W(A, U)(w) =% and in particular (u(a), v(a)) = (p, ¢) EU, which
is a contradiction.

Proposition 3. If the space Y contains more than one point, then the follow-
ing conditions are equivalent : ‘

1) B is the finest uniformity,

2) the topology I on F induced by S is the finest one,

3) XES and W is the finest uniformity on Y.

If the space Y consists of only one point, both L& and W consist of only one
point, and of course they are both the finest and the coarsest uniformity.

Proof. Tt is evident that 1) implies 2), and 3) implies 1). We shall show
that 2) implies 3). By 2), for any fixed u, &% there exist a set A= and an
entourage U &1 such that

if (wo(x), u(x)) EU wWES) for all z=A, then u=u,. (1)

The set A must coincide with the space X. In fact if a point @ of X does
not belong to A, we can choose a function 2= whose value at a is not

u#,(a) but coincides with that of u, otherwise. This is a contradiction.
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The entourage U must coincide with the diagonal set in Y X Y. In fact if
p and ¢ are distinct points such that (p, ¢) SU, then for the constant maps
#y and z with value p and ¢ respectively, the relation (1) does not hold.

It is natural that the uniformity %8 depends on both & and I, and in
general any uniformity on § can not always be defined by giving only &
adequate properties (cf. Proposition 3), while most uniformities on & in the
literature have been defined so.

§ 2. Simultaneous continuity.

Notation 1. Let X be a topological space, Y be a uniform space endowed
with a uniform structure 11, & be a u-family of subsets of X, and & be the
Afamily {A|AES}. Let F(X;Y) be the family of all mappings of X into Y,
€(X;Y) be the family of all continuous mappings of X into Y, and § (resp. €)
be any non-empty subfamily of F(X;Y) (resp. €(X;Y)). Let W (resp. W)
be the uniformity on F(X;Y) defined by & (resp. ©) as in Proposition 1.
These notations will keep these meanings throughout this section.

Definition 2. A uniformity on F(X;Y) is called a uniformity which gives
simultancous continuity for © in brief an s.c.—uniformity for €, if for each
=€ and each x, =X the following condition holds : for any entourage U
of Y there exist an entourage W of F(X ;YY) and a neighborhood V of z,
in X such that
the relation “u&W (u) and 2=V implies the relation “u(x) EU (w)(x0)) .

1)
A uniformity on §(X ;Y) is called an admissible uniformity which gives simul-
taneous continuity for € in brief an a.s. c.—uniformity for €, if the similar
condition that “au&W (u,)” is replaced by “uEW (u,) M€ in (1), holds.

It is evident that an s.c.-uniformity for € implies an a.s. c.—uniformity
for €. ,

Theorem 2. Let X, Y, U, &, W and € be the same as those in Notation
1. Let B, be the uniformity of compact convergence on F(X;Y). If U is not
the coarsest uniformity on Y, the following conditions are equivalent :

1) every point of X is interior to at least one set of &,

2) W is an s. c.—uniformity for €. ,

Moreover if X is locallyv compact, each of 1) and 2) is equivalent to the
following

3) W is finer than Td..

Proof. 1) implies 2) : (Dieudonné [3] had shown without the proof that 1)
implies that 2 is an a.s.c.~uniformity for €(X;Y) in our terminology).
For the sake of completeness we give a proof. For each x, ©X, choose a set
AES and a neighborhood V of x, in X such that V(CA. For any entourage
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U, choose an entourage U;&1 such that U2CU. For each uo&=€, there
exists a neighborhood V; of x; in X such that u,(V) CU (o (x)). I xE
VNV: and =W (A, Uy) (u,), then u(x) EU (uo(zy)).

2) implies 1) : Since 11 is not the coarsest uniformity, there exist an ento-
urage U’ =Y XY and a symmetric entourage U, such that U:CU’. If U,
(30) =Y for some y,&Y, then YXYCU’, which is a contradiction. Therefore

Ui(y) %Y for any y&Y.

Suppose that there exists a point x, which is not interior to any set belonging
to @. Take a mapping u,=€ and a point p such that pe&U,(u,(2)). By 2),
there exist a neighborhood V of z, in X, aset A/=S and an entourage U,
EW such that “zEV and uEW (A4, U)) (u)” implies “u(x) EU, (o (a0)) 7.
Take a point x; of V-A4A; and let u; be a mapping belonging to F(X;Y)
whose value is p at x; and the same as w, on A;. Then wu/&W (A, U)) (u)
but 2 (x,) € Uy (uo(2) ). This is a contradiction.

The remaining part of our proof is similar to the proof of Arens’ theorem
([1], p. 482) for the compact-open topology.

1) implies 3) : Let K be any compact subset of X and U be any entourage
of Y. For each x =K take a set A(x) E & which has the point x in its
interior. From the covering {A(x) |z &K} of K we can choose a finite
subcovering, say {A(xi) lxi EK, i=1,2, -, n}. Take a set AES such that
Ax) U Ax,) U UA(xn) CA, then WK, U)DW (A, U).

3) implies 2) : (The local compactness of X is used only in this case.) Let
#y be any mapping of € and x, be any point of X. For any entourage U1,
there is an entourage U,&U such that UCU. Take a compact neighborhood
V of z, in X such that u, () CU,(uo(x0)). By 3), there exist a set AE® and
an entourage U.EW such that W(V, U, DW(A, U,). Then for u=W(A,
U:) (uy) and x&V, we have u(x) EU (u,(x)).

Remarks. In the case where U is the coarsest uniformity, both 28 and L&
are the coarsest uniformity, the conditions 2) and 3) hold trivially, and the
condition 1) is independent of them.

Lemma 1. Uniformities I and B coincide on € <G,

Proof. The similar proof as in Bourbaki [2], Proposition 6, p. 280, is valid.

Theorem 3. [f X is a uniformizable topological space and Y a uniform space
which contains a non-degenerate arc, then the following conditions are equivalent :

1) every point of X is interior to at least one set of ©,

2) B is an s. c-uniformity for €(X;Y),

3) W is an a.s. c.-uniformity for €(X;Y),

4) W is an a.s. c.-uniformity for €(X;Y).

Proof. By Theorem 2, 1) and 2) are equivalent. It is evident that 2) implies
3). By Lemma 1, 3) and 4) are equivalent. We shall prove that 3) implies 1).
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For any two distinct points » and ¢ of a non-degenerate arc in Y, there is
an entourage U=U such that ¢&U(p). Let u, be the constant mapping of
X into {p}. Suppose that a point a of X exists that is not interior to any set
of . Since u=E(X;Y), there exist a neighborhood V of a in X, a set
AES and an entourage U,EU such that

the relations “cEV and uEW (A, U)) (u)) N€(X; Y)” imply the relation
“ulz) €U (p)”. ‘

Take a point & of V-A. Since X is uniformizable (cf. [2], p. 144), there exists
a real-valued continuous function f defined on X such that

F(A) =0, f(b)=1 and 0 < f(x)< 1 for every x&=X.

Moreover there exists a continuous mapping g of the closed interval [0, 1]
into Y such that

g(0)=p and g(1) =gq.

Let # be the composition g ¢ f. Then

bEV and uE W(A, U)(uy) NE(X; V),
but «(b) U (p), which is a contradiction.

Corollary. If © consists of closed subsets of X, then TS is an a.s.c.-
uniformity for €(X;Y) if and only if it is an s.c.-uniformity for (X
Y).

Remarks. When we replace €(X;Y) by €, Theorem 3 and its corollary
don’t hold in general. In fact, the uniformity 20, of pointwise convergence is
an a.s. c.-uniformity for an equicontinuous family €, of mappings of X into
Y (cf. Bourbaki [2], p. 286, Corollary 4), and all finite subsets of X are
closed if X is a T)-space. On the other hand, T, is not an s.c.-uniformity
for €, by Theorem 2 if X is not a discrete space and U is not the coarsest

uniformity.
§ 3. Sufficient conditions for the continuity of uwv.

Notation 2. Let X be a uniform space endowed with a uniform structure
U, & be a u-family of subsets of X, and & be the family {4 | AE®}. Let
H(X) be the family of all mappings of X into itself, €(X) be the family of
all continuous mappings of X into itself, and ¥ (resp. €) be any non-empty
subfamily of F(X) (resp. €(X)). Let W (resp. W) be the uniformity on F
(X)defined by & (resp. ©) as in Proposition 1. For any two mappings #, v
belonging to F(X), wv will always be the composite mapping z—u(v(x))
(xEX). These notations will keep the meanings hereafter throughout the
paper. ‘

Definition 3. Let ¥ be a non-empty subfamily of %(X). A uniformity 28
on F(X) is called a p.-uniformity for @, if the mapping (u, v)—uv is
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continuous at every point (uy, vo) EFXF with respect to the topologies on ¥
(X) x §(X) that are induced by the uniformity 2. Let §” be another
non-empty subfamily of $(X) which is closed under the function composition.
A uniformity T on F(X) is called an a. p.~uniformity for §’, if the mapping
(4, v) >uv is continuous at every point (uy, vo) EF’ X F’ with respect to the
relative topologies on § X F and F’ that are induced by the uniformity B,

It is evident that a p.—uniformity for §’ implies an a. p.-uniformity for .

Lemma 2 (Dieudonné [3]). Let u, and v, be two fixed mappings belonging
to §(X). If, for an arbitrary set AES, there exist a set BES and an
entourage UESW such that :

1) U(v,(A)) CB, and 2) u, is uniformly continuous on B,
then the mapping (u, v)—>uv of F(X) XF(X) into F(X) in continuous at (u,,
Vo) With respect to the topologies induced by the uniformity L8,

From this Lemma the following Proposition 4 follows directly.

Proposition 4. Let ¥ be any non-empty subfamily of F(X). If

1) for each mapping uEF and each set ACS, there exists a set BES such
that u(A)CB,

2) for each set AES, there exist an entourage USW and a set CES such
that U(A) CC, and

3) each mapping u=F is uniformly continuous on every set ACS,
then the uniformity B is a p.-uniformity for 3.

Remarks. i) If the identity mapping of X is contained in ¥, the unified
condition of 1) and 2) in Proposition 4 is equivalent to the condition 1) for
any v.&% in Lemma 2.

ii) If the condition (closely related to the fact that T is Hausdorff
Bourbaki [2], p. 318)

4) X is covered by S,
is combined with the conditions 1), 2), and 3) in Proposition 4, it is easily

seen that
a) the condition 2) implies that T coincides with %,
b) the conditions 2) and 4) imply that every point of X is interior to at

least one set of &, and

¢) the conditions 2), 3), and 4) imply that FCE (X).

Proposition 5. Let © be any non-empty subfamily of €(X) which is closed
under the function composition. If

1)7 for each mapping u=C and each set ASS, there exists a set BES such
that w(A)CB,

2)7 for each set ACS, there exist an entourage UEU and a set CES such
that U(A) CC, and
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3)7 every mapping u=GC is uniformly continuous on A for every set ACS,
then the uniformity LS is an a. p.-uniformity for €.

Proof. By conditions 1)7, 2)7, and 3)7, the conditions 1), 2), and 3) in
Proposition 4 are valid for & and € in place of & and ¥ respectively. So o
is an a. p.-uniformity for € by Proposition 4 and Lemma 1.

Remarks. 1t is easy to see that “the conditions 1), 2), and 3) for =€ in
Proposition 4 “imply” the conditions 1)7, 2)/, and 3)7”.

§ 4. Necessary conditions for the continuity of uv —— p.-uniformity.

In this section we shall show that the conditions in Proposition 4 are also
necessary conditions.in a natural sense.

Lemma 3. Let §§ be any subfamily of §(X) which contains the identity
mapping of X, and U be a non-coarsest uniformity on X. If B is a p.—uni-
Sormity for §, then the conditions 1), 2), and 3) in Proposition 4 hold.

Proof. Since 11 is a non-coarsest uniformity, there exists an entourage U,
such that U’ Xx X and U, *=U,. Then

U,(z) %X for any zEX. (1)
Let u, be any fixed mapping belonging to %, and v; be the identity mapping
of X. Since B is a p.~uniformity for &, for uy, v=F, AES, and U,cU
that are given arbitrarily, there exist Bi, B.&& and Vi, V.EW such that

if u,vEFX), (w, n) EW (B, V) and (v,, v) E W (B,, V), then (uov0, uv)
=W (A, U,). (2)
We shall consider three cases for u,, v,, Ao, and U,.

Case a). Suppose that there exist a mapping v.&% and a set A,&& such
that

v, (A,) CA for any set AES. (3)
For uy=u,, vo=v:, A=A, and Uy=U,, choose B,, B,&& and V;, V,&U such
that the relation (2) holds. Take a Point p Ev,(A4:) — B, (cf. (3)), a point ¢

2.7 (p) NA:, and a point 7 U, (1, (p)) (cf. (1)). There exist two mappings z,
vEF(X) such that

w(z) =u, (z) for zEB,, u(p) =r ; viz) =v.(x) for xEB,U{q}.

Then (u; (v:(q)), u (v(g))) &€U,, but the premise of (2) is satisfied. This is a
contradiction.

Case b). Suppose that there exists a set 4,&& such that

U(A) CB for any UEN and any BES. 4
For wy=u, vo=v:, A= A,, and U,=U,, choose B,, B:=& and V;, V&1l such
that the relation (2) holds. Take a point p&V,(A;) —B; (cf.(4)), a point
qg= A, such that (¢, p) V., and a point U, (u,(q)) (cf. (1)). There exist
two mappings u#, vE&EF(X) such that
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u(x) =u(z) for xEB:, u(p) =r ; v(x)=vi(zx) for z=EB,—{q}, v(g) =p.
Then (u:(vi(q)), u(v(g))) €U,, which is a contradiction.

Case ¢). Suppose that a mapping #,&=% is not uniformly continuous on a
set A;=Q, i. e. there exists an entourage U,E1l such that for each entourage
U.E1 there are two points Za, v =A; as follows :

(e, ¥a) EUs and (1 (), wa (ya) ) E U (5)
For wy=u;, vo=v:, Ay=A;, and U,=U,, choose B, B.&& and V;, V,EN such
that the relation (2) holds and B, DA,. For U,=V,, let «*, y* be the corres-
ponding Za, y, in (5). There exist two mappings #, vEF(X) such that

u(z) =u,(z) for x=B; ; v(x) =v,(x) =z for £EB,— {x*}, v(x*) =y*. Then
(202 (01 (x®) ), u(v(x*))) €U, which is a contradiction.

From Proposition 4 and Lemma 3, we have the following theorem.

Theorem 4. Let X be a uniform space endowed with a non-coarsest uniform
structure 1, and F(X), &, and B be the same as those in Notation 2. Let F
be any subfamily of F(X) which contains the identity mapping of X. Then T
is a p.uniformity for F if and only if the following three conditions hold :

1) for each mapping u=F and each set ACS, there exists a set BES such
that u(A) CB, '

2) for each set ACS, there exist an entourage UCY and a set CES such
that U (A) CC, and

3) each mapping w=F is uniformly continuous on every set ACS,

§ 5. Necessary conditions for the continuity of uv—a. p.-uniformity.

In this section we shall show that the three conditions in Proposition 5 are
also necessary conditions in a sense.

Lemma 4. Let X be a uniform space that contains a non-degenerate arc, and
C(X) be the family of all continuous mappings of X into itself. If 98 is an
a. p.~uniformity for €(X), then, for each mapping v=C(X) and each set A
&S, there exists a set BES such that u(A) CB

Proof. Take two distinct points p and ¢ on a non-degenerate arc in X, and
an entourage U;E1 such that (p,q) €U,. Let u, be the constant mapping of
X into p. Now suppose that there exist a mapping v;=€ (X) and a set 4,6
such that v, (4,) CA for any set AC®. Since 0 is an a. p.—uniformity for €
(X), for u, vi, Ai, and U,, there exist A,, A;E® and U,, U;&U such that

if ucW(4,, U,) () NE€(X) and vEW (A;, U,) (v) NE(X), then wveEW
(A1, Uy) (w00 NEX).

Take a point 7Ewv;(A4;) —A, and a point sEA, such that 7=v:(s). Since X is
uniformizable, there is a continuous mapping f of X into the closed interval
[0, 1] such that £(4,) =0 and f (r) =1 (cf. Bourbaki [2], p. 144). Moreover



10 Takashi KARUBE

there is a contiunous mapping g of the closed interval [0, 1] onto an arc ;5
such that g(0) =p and g(1) =¢g. Then for u=gof and v=v;, we have (u (v,
(5)), (v (s))) = (p, q) €U, which is a contradiction.

For the proof of the remaining two conditions in Proposition 5, we need an
auxiliary concept “uniform deformability” as follows.

Definition 4. A uniform space X with a uniformity U is uniformly deformable
if for any entourage UEU there exists an entourage U*EU as follows : for
any two U%*-close points p and ¢, there exists a continuous mapping f of X
into itself such that f(p) =¢ and (z, f(x)) EU for any zEX.

L. R. Ford, jr. [4] defined the similar notion “strong local homogeneity”
which is stronger than ours in those points that f must be a homeomorphism
and fixes the complement of a neighborhood of x, while weaker than ours
since the uniform scale of such neighborhoods is not required. There are
several examples common to his and ours.

Ezxamples. The following spaces i), ii),:s, v) are uniformly deformable
uniform spaces, whereas the space vi) is a manifold that is not uniformly
deformable : i) locally euclidean, uniformly locally connected, uniform spaces,
ii) locally euclidean, compact, uniform spaces, iii) convex subsets of a normed
space, iv) the set of all rational points in a euclidean space, v) discrete uniform
spaces, and vi) the set of all points (z, ¥) in the euclidean plane such that (z*
+1) ¥*>2x. (The uniformities of iii), iv), and vi) are the usual ones.)

Now we prove a lemma for Theorem 5 in the next page.

Lemma 5. Let X be a uniformly deformable space that contains a non-dege-
nerate arc, and € (X) be the family of all continuous mappings of X into itself.
If B is an a. p.~uniformity for €(X), then conditions 2)7 and 3)” in Propo-
sition 5 hold for €(X).

Proof. Since T and W coincide on €(X) xC(X) by Lamme 1, B is an
a. p.~uniformity for €(X). Hence, for u,, v,C€(X), A,E6, and U,&U that
are given arbitrarily, there exist A,, 4,&& and U,, U,E1 such that

if uEW (A, U)(uw) NE(X) and vEW (A, U,)(w)NE(X), then uvEW
(Ao, Uo) (uovo) ﬂ@(X) (1)
Since X is uniformly deformable, we can choose an entourage U;E1l as follows
: for any Us-close two points «* and y*, there is a mapping vE€ (X) such
that

1) v(x*) =y* and 2) v(x) is U,-close to = for any =X, 2
Let e be the identity mapping of X. We shall consider two cases for uo, v, 4o,
and U,.

Case a). Let /p\q be any non-degenerate arc in X, and choose an entourage
V& such that (p, ) V. Let k be the constant mapping of X into p. Now
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suppose that there exists a set BE& such that , '

UB)TA for any UEN and any ACS, (3)
For uy=*k, vo=e, Ay=B, and U,=V, choose 4;, 4,&=& and U,, U, such that
the relation (1) holds. For U,, choose an entourage U;&U such that (2) holds.
Take a point »EU,(B) —A, (cf. (3)), and a point s&B such that (s, ) EUs.
By (2), we can choose a mapping v&€(X) for £*=s and y*=r. Since X is
uniformizable, there exists a mapping #=€ (X) such that u(A)) =p and u () =
q. Then (k(e(s)), u (v(s)))=(p, @ &V, which is a contradiction (cf. (1)).

Case b). Suppose that a mapping fEE(X) is not uniformly continuous on
a set BE@, i. e., there exists an entourage V& such that for each entourage
U.EU there are two points T, va =5 as follows : (24, Vo) EUL and (f(xa),
Fly)) &V, For u=f, vo=e, Ay=B, and U,=V, choose A, A, and U,
U,=1 such that the relation (1) holds. For U;, choose an entourage U,&1l
such that (2) holds. Moreover we can choose two points z* and y* in B such
that (z*, y*) EU; and (f (x*), f(y*)) €V. For these U;-close points x* and
y*, there is a mapping vEC€(X) such that (2) holds. Then (f (e (x*)), f (v
(x*))) = (f (=*), f (y*)) &V, which is a contradiction (cf. (1)).

By Proposition 5, Lemma 4 and Lemma 5, we have

Theorem 5. Let X be a uniformly deformable space endowed with a uniform
structure U which contains a non-degenerate arc, and € (X) be the family of
all continuous mapping of X into itself. Then T is an a.p.~uniformity for €
(X) if and only if the following three conditions hold :

1) for each mapping u=C (X) and each set AES, there exists a set BES
such that u (A) CB,

2) for each set AES, there exist an entourage UES and a set CES such
that U(A) CC, and

3) every mapping ucEC(X) is uniformly continuous on A for any set AES,

Corollary 1. Let X, U, and € (X) be the same as those in Theorem 5. The
following two conditions i) and ii) are equivalent :

i) W is an a. p.—uniformity for €(X),

i) I is a p—uniformity for €(X).

Proof. The condition i) implies conditions 1), 2), and 3) in Theorem 5. Now
in 1), #(A) C B implies «(A) CB by the continuity of «, and in 2), if we take
an entourage VEU such that VZCU, we have V (A) CC. Hence the condition
ii) holds by Proposition 4. Conversely, the condition ii) impliesb that 20 is an
a. p.—uniformity, and so we have i) by Lemma 1.

Corollary 2. Let X, U and € (X) be the same as those in Theorem 5. If all
sets in © are closed, then T is an a.p.—uniformity for €(X) if and only if it
is a p.—uniformity for €(X).
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8 6. Uniformities which satisfy our continuity conditions.

In conclusion, we shall summarize several results in this paper in a form.
To what extent & and U are restricted by the following conditions imposed
on W 2—

1) W is a uniformity that is defined directly by & and U only, and coincides
with the usual one,

2) %W ensures the joint continuity and the continuity of the product opera-
tion for a semi-group € of continuous transformations of a uniform space X.

In this point of view, it seems to us from our results that the following five
conditions are to be satisfied :

1) for any two sets A, BE® there exists a set CES such that AUBCC,

2) & covers X,

3) for each mapping #E€ and each set AES, there exists a set BE® such
that «(A) CB,

4) for each set AE®, there exist an entourage USU and a set CES such
that U (A4) CC,

5) every mapping #&€ is uniformly continuous on A for every set AES,

We have examined these conditions in various cases in each of which & is
a family of all subsets of a euclidean space that have a particular topological
property. After the trial, we have conjectured that if X is a euclidean space
and € is €(X), then T must be the uniformity of compact convergence. In
fact it is affirmative in more general cases where X is either any locally
euclidean, uniformly locally connected, metric space or any convex subset of a
normed space (cf. Karube [5]). The fact together with many results on the
compact-open topology shows that the compact-open topology for € is the
most natural set-open topology (cf. e. g., Kelley [6], p.230).
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