ファイル情報(添付) |
![]() |
タイトル |
GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS
|
著者 | |
収録物名 |
島根大学総合理工学部紀要.シリーズB
Memoirs of the Graduate School of Science and Engineering, Shimane University. Series B, Mathematics
|
巻 | 51 |
開始ページ | 1 |
終了ページ | 5 |
収録物識別子 |
ISSN 1342-7121
|
内容記述 |
その他
This paper is the survey of joint works with K. Ogiue ([7]) and B.H. Kim, I.B. Kim ([5]). Geodesic spheres G(r) are fundamental examples of (real) hypersurfaces in a Riemannian manifold. In this paper, as an ambient space we take an ndimensional complex projective space CPn(c); n ≧ 2 of constant holomorphic sectional curvature c(> 0). By observing geodesics on G(r) in CPn(c) we characterize all G(r) (0 < r < =pc ) (Theorems 1 and 2)and some G(r) which are called Berger spheres (Theorem 3).
|
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
総合理工学部
The Interdisciplinary Graduate School of Science and Engineering
|
発行日 | 2018-03 |
出版タイプ | Version of Record(出版社版。早期公開を含む) |
アクセス権 | オープンアクセス |
関連情報 |
ソウゴウ リコウ ガクブ
|