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Abstract. This paper is the survey of joint works with K. Ogiue ([7]) and
B.H. Kim, I.B. Kim ([5]). Geodesic spheres G(r) are fundamental examples of
(real) hypersurfaces in a Riemannian manifold. In this paper, as an ambient
space we take an n−dimensional complex projective space CPn(c), n ≧ 2 of
constant holomorphic sectional curvature c(> 0). By observing geodesics on
G(r) in CPn(c) we characterize all G(r) (0 < r < π/

√
c ) (Theorems 1 and 2)

and some G(r) which are called Berger spheres (Theorem 3).

1. Introduction

In differential geometry, there are two geometries. One is intrinsic geometry and
the other is extrinsic geometry (submanifold geometry). Among real hypersurfaces
M2n−1 isometrically immersed into CP n(c) , n ≧ 2, we pay particular attention to
geodesic spheres G(r) of radius r (0 < r < π/

√
c ). The class of geodesic spheres

G(r) in CP n(c) is an abundant class which gives fruitful results in both of intrinsic
geometry and extrinsic geometry.

In intrinsic geometry, we recall a well-known result due to W. Klingenberg : Let
M be an even dimensional compact simply connected Riemannian manifold having
the sectional curvature K with 0 < K ≦ L on M , where L is a constant. Then

the length ℓ of every closed geodesic on M satisfies ℓ ≧ 2π/
√
L (see [4]). However

the odd dimensional version of the above result does not hold (cf. [11]). Indeed,
let G(r) be a (2n−1)-dimensional geodesic sphere of radius r (0 < r < π/

√
c )

with tan2(
√
c r/2) > 2 in CP n(c). Then in this case there exists a closed geodesic

on G(r) whose length is shorter than 2π/
√
L , where L is the maximal sectional

curvature of G(r). The sectional curvature K of every geodesic sphere G(r) of
radius r (0 < r < π/

√
c ) satisfies sharp inequalities 0 < (c/4) cot2(

√
c r/2) ≦ K ≦

c + (c/4) cot2(
√
c r/2)(= L) at its each point. In this paper, geodesic spheres of
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radius r (0 < r < π/
√
c ) with tan2(

√
c r/2) > 2 in CP n(c), n ≧ 2 are called

Berger spheres.
In extrinsic geometry, we can say that all G(r) are the simplest examples of real

hypersurfaces in CP n(c). It is known that CP n(c) does not have a totally umbilic
real hypersurface and T. Cecil and P. Ryan ([3]) show that every geodesic sphere is
the only example of real hypersurfaces in CP n(c) (n ≧ 3) with at most two distinct
principal curvatures at its each point. This means that every G(r) is the simplest
real hypersurface of CP n(c).
The purpose of this paper is to characterize geodesic spheres in CP n(c) in ex-

trinsic geometry (see Theorems 1, 2 and 3) and clarify geometric properties of such
hypersrfaces from the viewpoint of intrinsic geometry (see the last section).

This paper is related to a talk of the author in 2017 (October 6 ∼ 8) International
Conference on Differential Geometry and Applications, Mykonos Island, Greece.

We adopt usual notations and terminologies in the theory of real hypersurfaces
in CP n(c) (for examples, see [8, 9]).

2. circles in Riemannian geometry

The key word in our paper is a circle. We recall the definition of circles in
Riemannian geometry.

Let γ = γ(s) be a smooth real curve parametrized by its arclength s on a
Riemannian manifold M with Riemmanian connection ∇. If the curve γ satisfies
the following ordinary differential equations with some constant k(≧ 0):

∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇,

where ∇γ̇ is the covariant differentiation along γ with respect to the Riemmanian
connection ∇ of M and Ys is the so-called unit principal normal vector of γ, we
call a circle of curvature k on M . We may regard a geodesic of null curvature. By
virtue of the existence and uniqueness theorem on solutions to ordinary differential
equations we can see that at any point p of a Riemannian manifold M for each
positive constant k and every pair {X,Y } of orthonormal vectors X,Y (∈ TpM)
there exists locally the unique circle γ of curvature k on M with initial condition
that γ(0) = p, γ̇(0) = X and Y0 = Y .

3. Main results

Since CP n(c) does not admit totally umbilic real hypersurfaces, there does not
exist real hypersurfaces all of whose geodesics are mapped to circles in this ambi-
ent space (See [10] and Proposition 2 in [6]). So it is natural to investigate real
hypersurfaces some of whose geodesics are mapped to circles in CP n(c).
The following three theorems are established from this viewpoint. Theorem 3.3

is an immediate consequence of Theorem 3.2.

Theorem 3.1 ([7]). Let M2n−1 be a real hypersurface of CP n(c), n ≧ 2 through an
isometric immersion. Then M is locally congruent to a geodesic sphere G(r) (0 <
r < π/

√
c ) with respect to the full isometry group SU(n + 1) of the ambient

space CP n(c) if and only if there exist such orthonormal vectors v1, v2, . . . , v2n−2
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orthogonal to the characteristic vector ξp at each point p of M that all geodesics of
M through p in the direction vi + vj (1 ≦ i ≦ j ≦ 2n − 2) are circles of positive
curvature in CP n(c).

Theorem 3.2 ([7]). Let M2n−1 be a real hypersurface of CP n(c), n ≧ 2. Then M
is locally congruent to either a geodesic sphere G(r) (0 < r < π/

√
c ) with n ≧ 2

or a tube of radius π/(2
√
c ) around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n− 2) with

n ≧ 3 if and only if there exist such orthonormal vectors v1, v2, . . . , v2n−2 orthogonal
to the characteristic vector ξp at each point p of M that all geodesics of M through
p in the direction vi (1 ≦ i ≦ 2n− 2) are circles of the same positive curvature k(p)
in CP n(c). Here, the function k = k(p) on M is automatically constant. When
M is locally congruent to G(r), k is expressed as: k = (

√
c /2) cot(

√
c r/2), and

when M is locally congruent to a tube of radius π/(2
√
c ) around a totally geodesic

CP ℓ(c) (1 ≦ ℓ ≦ n− 2), k is written as: k =
√
c /2.

Theorem 3.3 ([5]). Let M2n−1 be a real hypersurface of CP n(c), n ≧ 2. Then M is
locally congruent to a Berger sphere, namely a geodesic sphere G(r) of radius r with
tan2(

√
c r/2) > 2 if and only if at each point p of M there exist such orthonormal

vectors v1, v2, . . . , v2n−2 orthogonal to the characteristic vector ξp at each point p of
M that all geodesics of M through p in the direction vi (1 ≦ i ≦ 2n− 2) are circles
of the same positive curvature k(p) with k(p) <

√
c /(2

√
2 ) in CP n(c).

4. Several comments on Theorems 1, 2 and 3

(1) In Theorems 3.1, 3.2 and 3.3, all geodesics on G(r) are mapped to circles
lying on a totally real totally geodesic RP n(c/4) of constant sectional curvature
c/4 in the ambient space CP n(c). Note that there exist many geodesics on G(r)
which do not lie on RP n(c/4) (cf. Proposition 2.1 in [2]).

(2) In Theorem 3.2, to distinguish geodesic spheres G(r) (0 < r < π/
√
c ) and a

tube T of radius π/(2
√
c ) around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n − 2), we

recall the notion of extrinsic geodesics. We denote by Mn a Riemannian submani-

fold of a Riemannian manifold M̃n+p through an isometric immersion f . A smooth
real curve γ = γ(s) on the submanifold Mn is an extrinsic geodesic if the curve

f ◦ γ is a geodesic in the ambient space M̃n+p. In this case, as a matter of course
the curve γ is also a geodesic on the submanifold Mn.
The following fact implies that we can distinguish G(r) and a tube T , i.e., a tube

of radius π/(2
√
c ) around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n− 2), by counting

the number of congruence classes of extrinsic geodesics (see [9]).

Fact. (i) A geodesic sphere G(r) (0 < r < π/(2
√
c )) has no extrinsic geodesics.

(ii) A geodesic sphere G(r) (π/(2
√
c ) ≦ r < π/

√
c ) has just one extrinsic geodesic

with respect to the full isometry group I(G(r)) of G(r).
(iii) The tube T has uncountably infinite many extrinsic geodesics with respect to
the full isometry group I(T ) of T .

(3) We comment on the length of an integral curve of the characteristic vector
field ξ on a geodesic sphere G(r) in CP n(c). We note that every integral curve
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γξ of the characteristic vector field ξ is a closed geodesic on G(r) with length

2π sin(
√
c r)/

√
c . In fact, the curve γξ satisfies ∇ξξ = 0, ∇̃ξξ =

√
c cot(

√
c r)N

and ∇̃ξN = −
√
c cot(

√
c r)ξ with γ̇ξ = ξ, where ∇ and ∇̃ are the Riemannian

connections of G(r) and CP n(c), respectively. These mean that the curve γξ can be
regarded as a small circle of positive curvature

√
c | cot(

√
c r)| on S2(c)(= CP 1(c)).

Hence, the length ℓ of γξ is represented as:

ℓ = 2π/

√
c cot2(

√
c r) + c = 2π sin(

√
c r)/

√
c .

We next consider an inequality:

2π sin(
√
c r)/

√
c < 2π/

√
c+ (c/4) cot2(

√
c r/2),

where c + (c/4) cot2(
√
c r/2) is the maximal sectional curvature of G(r). Solving

this inequality, we get tan2(
√
c r/2) > 2.

(4) We review the length spectrum of every geodesic sphereG(r) (0 < r < π/
√
c )

(for details, see [2]). Every geodesic sphere G(r) (0 < r < π/
√
c ) admits countably

infinite many congruence classes of closed geodesics with respect to the full isometry
group I(G(r)) of G(r). All integral curves of the characteristic vector field ξ are
congruent each other with respect to I(G(r)) and the shortest closed geodesics
(with common length 2π sin(

√
c r)/

√
c ) on G(r). Furthermore, the lengths of all

closed geodesics except integral curves of the characteristic vector field ξ on G(r)

are longer than 2π/
√
c+ (c/4) cot2(

√
c r/2).

(5) We consider all geodesic spheres G(r) (0 < r < π/
√
c ) from the viewpoint

of contact geometry (cf. [1]). G(r) is a Sasakian manifold (with respect to the
almost contact metric structure (ϕ, ξ, η, g) induced from the Käler structure J of
CP n(c)) if and only if (

√
c /2) cot(

√
c r/2) = 1. This Sasakian manifold M has

automatically constant ϕ-sectional curvature c + 1, so that it is a Sasakian space
form of constant ϕ-sectional curvature c + 1. Since an inequality 1 <

√
c /(2

√
2 )

leads to an inequality c > 8, we find that all Sasakian space forms of constant
ϕ-sectional curvature c̃ with c̃ > 9 are Berger spheres.

(6) We comment on the sectional curvature K of Berger spheres, i.e., geodesic
spheres G(r) with tan2(

√
c r/2) > 2 in CP n(c). K satisfies sharp inequalities

δL ≦ K ≦ L for some δ ∈ (0, 1/9), where L = c+ (c/4) cot2(
√
c r/2).
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