Nonoscillation of second-order linear difference systems with varying coefficients

Linear Algebra and its Applications 531 巻 22-37 頁 2017-10-15 発行
アクセス数 : 1043
ダウンロード数 : 67

今月のアクセス数 : 32
今月のダウンロード数 : 0
ファイル情報(添付)
タイトル
Nonoscillation of second-order linear difference systems with varying coefficients
著者
収録物名
Linear Algebra and its Applications
Linear Algebra and its Applications0
531
開始ページ 22
終了ページ 37
収録物識別子
ISSN 0024-3795
内容記述
その他
This paper deals with nonoscillation problem about the non-autonomous linear difference system
xn = Anxn−1, n = 1,2,...,
where An is a 2×2 variable matrix that is nonsingular for n ∈ N. In the special case that A is a constant matrix, it is well-known that all non-trivial solutions are nonoscillatory if and only if all eigenvalues of A are positive real numbers; namely, detA > 0, trA > 0 and detA/(trA) 2 ≤ 1/4. The well-known result can be said to be an analogy of ordinary differential equations. The results obtained in this paper extend this analogy result. In other words, this paper clarifies the distinction between difference equations and ordinary differential equations. Our results are explained with some specific examples. In addition, figures are attached to facilitate understanding of those examples.
主題
Linear difference equations ( その他)
Non-autonomous ( その他)
Nonoscillation ( その他)
Riccati transformation ( その他)
Sturm’s separation theorem ( その他)
言語
英語
資源タイプ 学術雑誌論文
発行日 2017-10-15
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 オープンアクセス
関連情報
[DOI] 10.1016/j.laa.2017.05.031