ファイル情報(添付) |
![]() |
タイトル |
Nonoscillation of second-order linear difference systems with varying coefficients
|
著者 | |
収録物名 |
Linear Algebra and its Applications
Linear Algebra and its Applications0
|
巻 | 531 |
開始ページ | 22 |
終了ページ | 37 |
収録物識別子 |
ISSN 0024-3795
|
内容記述 |
その他
This paper deals with nonoscillation problem about the non-autonomous linear difference system
xn = Anxn−1, n = 1,2,..., where An is a 2×2 variable matrix that is nonsingular for n ∈ N. In the special case that A is a constant matrix, it is well-known that all non-trivial solutions are nonoscillatory if and only if all eigenvalues of A are positive real numbers; namely, detA > 0, trA > 0 and detA/(trA) 2 ≤ 1/4. The well-known result can be said to be an analogy of ordinary differential equations. The results obtained in this paper extend this analogy result. In other words, this paper clarifies the distinction between difference equations and ordinary differential equations. Our results are explained with some specific examples. In addition, figures are attached to facilitate understanding of those examples. |
主題 | |
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
発行日 | 2017-10-15 |
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | オープンアクセス |
関連情報 |
[DOI] 10.1016/j.laa.2017.05.031
|